Article
2018
-
[492] K. Kimura, J. Nitta, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, "Single-channel 7.68 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 9.7 bit/s/Hz," Opt. Express vol. 26, no. 13, pp. 17418-17428, June (2018).
-
[491] Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, "Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer," Opt. Express vol. 26, no. 13, pp. 17015-17024, June (2018).
-
[490] M. Nakazawa, M. Yoshida, M. Terayama, S. Okamoto, K. Kasai, and T. Hirooka, "Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission," Opt. Express vol. 26, no. 7, pp. 9165-9181, April (2018).
-
[489] D. Soma, Y. Wakayama, S. Beppu, S. Sumita, T. Tsuritani, T. Hayashi, T. Nagashima, M. Suzuki, M. Yoshida, K. Kasai, M. Nakazawa, H. Takahashi, K. Igarashi, I. Morita, and M. Suzuki,, “10.16-peta-b/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band,” J. Lightwave Technol. vol. 36, no. 6, pp. 1362-1368, March (2018).
-
[488] K. Kasai, M. Nakazawa, M. Ishikawa, and H. Ishii, “ 8 kHz linewidth, 50 mW output, full C-band wavelength tunable DFB LD array with self-optical feedback,” Opt. Express vol. 26, no. 5, pp. 5675-5685, March (2018).
-
[487] S. Okamoto, M. Terayama, M. Yoshida, K. Kasai, T. Hirooka, and M. Nakazawa, “Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission,” Opt. Express vol. 26, no. 3, pp. 3535-3543, February (2018).
2017
-
[486] H. Ishii, N. Fujiwara, K. Watanabe, S. Kanazawa, M. Itoh, H. Takenouchi, Y. Miyamoto, K. Kasai, and M. Nakazawa, “Narrow Linewidth Tunable DFB Laser Array Integrated with Optical Feedback Planar Lightwave Circuit (PLC),” IEEE Sel. Top. Quantum Electron. vol. 23, no. 6, 1501007, November/December (2017).
-
[485] K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 μm," IEICE Electron. Express, vol. 14, no. 18, 20170829, October (2017).
-
[484] T. Kan, K. Kasai, M. Yoshida, and M. Nakazawa, “42.3 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz,” Opt. Express vol. 25, no. 19, pp. 22726-22737, September (2017).
-
[483] K. Kasai, M. Nakazawa, Y. Tomomatsu, and T. Endo, “1.5 μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band,” Opt. Express, vol. 25, no. 18, pp. 22113-22124, September (2017).
-
[482] S. Kumar and M. Nakazawa, “Discrete solitons in optical fiber systems with large pre-dispersion,” Opt. Express, vol. 25, no. 17, pp. 19923-19945, August (2017).
-
[481] M. Yoshida, T. Hirooka, and M. Nakazawa, “Low-loss and reflection-free fused type fan-out device for 7-core fiber based on a bundled structure,” Opt. Express, vol. 25, no. 16, pp. 18817-18826, August (2017).
-
[480] M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, R. Namiki, “QAM Quantum Noise Stream Cipher Transmission over 100 km with Continuous Variable Quantum Key Distribution," IEEE J. Quantum Electron., vol. 53, no. 4, 8000316, August (2017).
-
[479] J. Nitta, M. Yoshida, K. Kimura, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-Channel 3.84 Tbit/s, 64 QAM Coherent Nyquist Pulse Transmission over 150 km with a Spectral Efficiency of 10.6 Bit/s/Hz,” Opt. Express, vol. 25, no. 13, pp. 15199-15207, June (2017).
2016
-
[478] D. Suzuki, K. Harako, T. Hirooka, and M. Nakazawa, “Single-channel 5.12 Tbit/s (1.28 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses,” Opt. Express, vol. 24, no. 26, pp. 29682-29690, December (2016).
-
[477] M. Yoshida, K. Yoshida, K. Kasai, and M. Nakazawa, “1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser,” Opt. Express, vol. 24, no. 21, pp. 24287-24296, October (2016).
-
[476] T. Hirooka, K. Tokuhira, M. Yoshida, and M. Nakazawa, “440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber,” Opt. Express, vol. 24, no. 21, pp. 24255-24264, October (2016).
-
[475] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator,” Opt. Express, vol. 24, no. 19, pp. 22088-22096, September (2016).
-
[474] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, “Roll-off factor dependence of Nyquist pulse transmission,” Opt. Express, vol. 24, no. 19, pp. 21986-21994, September (2016).
-
[473] M. Nakazawa and T. Hirooka, “A Non-Perturbative Mode-Locking Theory of the Nyquist Laser With a Dirichlet Kernel Solution,” IEEE J. Quantum Electron. vol. 52, no. 8, 1300113, August (2016).
-
[472] M. Nakao, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 1.55 μm, 271 fs and 1.07 μm, 294 fs simultaneously mode-locked Er- and Yb-doped fiber laser with a single SWNT/PVA saturable absorber,” IEICE Electron. Express, vol. 13, no. 14, 20160515, July (2016).
-
[471] M. Nakazawa and T. Hirooka, "A mode locking theory of the Nyquist laser," Opt. Express vol. 24, no. 5, pp. 4981-4995, March (2016).
-
[470] K. Kasai and M. Nakazawa, “Ultra-multilevel digital coherent optical transmission employing a narrow linewidth laser, an optical phase-locked loop circuit and injection-locking scheme,” The Review of Laser Engineering (in Japanese), vol. 44, no. 2, pp. 106-110, February (2016).
-
[469] K. Kasai, M. Yoshida, and M. Nakazawa, “295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of -120 dB/Hz,” Opt. Express vol. 24, no. 3, pp. 2737-2748, February (2016).
-
[468] D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, 64 QAM coherent Nyquist orthogonal TDM transmission with a spectral efficiency of 10.6 bit/s/Hz,” J. Lightwave Technol. vol. 34, no. 2, pp. 768-775, January (2016).
-
[467] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express, vol. 24, no. 1, pp. 652-661, January (2016).
2015
-
[466] T. Yajima, J. Yamamoto, Y. Kinoshita, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “OH-free low loss single-mode fiber fabricated by slurry casting / rod-in-tube method,” IEICE Electron. Express, vol. 12, no. 24, 20151005, December (2015).
-
[465] T. Hirooka and M. Nakazawa, “Q-factor analysis of nonlinear impairments in ultrahigh-speed Nyquist pulse transmission,” Opt. Express, vol. 23, no. 26, pp. 33484-33492, December (2015).
-
[464] T. Hirooka, K. Kasai, Y. Wang, M. Nakazawa, M. Shiraiwa, Y. Awaji, and N. Wada, “First demonstration of digital coherent transmission in a deployed ROADM network with a 120 Gbit/s polarization-multiplexed 64 QAM signal,” IEICE Electron. Express, vol. 12, no. 23, 20150884, December (2015).
-
[463] K. Harako, D. Suzuki, T. Hirooka, and M. Nakazawa, “2.56 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km,” Opt. Express, vol. 23, no. 24, pp. 30801-30806, November (2015).
-
[462] K. Kasai, Y. Wang, S. Beppu, M. Yoshida, and M. Nakazawa, “80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver,” Opt. Express, vol. 23, no. 22, pp. 29174-29183, November (2015).
-
[461] K. Kasai, Y. Wang, D. O. Otuya, M. Yoshida, and M. Nakazawa, “448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 10.7 bit/s/Hz,” Opt. Express vol. 23, no. 22, pp. 28423-28429, November (2015).
-
[460] T. Hirooka, D. Seya, K. Harako, D. Suzuki, and M. Nakazawa, “Ultrafast Nyquist OTDM demultiplexing using optical Nyquist pulse sampling in an all-optical nonlinear switch,” Opt. Express, vol. 23, no. 16, pp. 20858-20866, August (2015).
-
[459] M. Yoshida, S. Beppu, K. Kasai, T. Hirooka, and M. Nakazawa, “1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz,” Opt. Express, vol. 23, no. 16, pp. 20760-20766, August (2015).
-
[458] S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, "2048 QAM (66Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz," Opt. Express, vol. 23, no. 4, pp.4960-4969, February (2015).
-
[457] A. Fujisaki, S. Matsushita, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, "An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser," Opt. Express, vol. 23, no. 2, pp. 1081-1087, January (2015).
2014
-
[456] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km,” Opt. Express, vol. 22, no. 25, pp. 31310-31316, December (2014).
-
[455] M. Nakazawa, M. Yoshida, and T. Hirooka, “Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR,” Opt. Express, vol. 22, no. 25, pp. 31299-31309, December (2014).
-
[454] M. Nakazawa, “Evolution of EDFA from single-core to multi-core and related recent progress in optical communication,” Optical Review, vol. 21, no. 6, pp. 862-874, December (2014).
-
[453] K. Harako, D. O. Otuya, K. Kasai, T. Hirooka, and M. Nakazawa,“High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality,” Opt. Express, vol. 22, no. 24, pp. 29456-29464, December (2014).
-
[452] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 1.92 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 7.5 bit/s/Hz,” Opt. Express, vol. 22, no. 20, pp. 23776-23785, October (2014).
-
[451] Y. Wang, K. Kasai, M. Yoshida, and M. Nakazawa, “60 Gbit/s, 64 QAM LD-based injection-locked coherent heterodyne transmission over 160 km with a spectral efficiency of 9 bit/s/Hz,” IEICE Electron. Express vol. 11, no. 17, 20140601, September (2014).
-
[450] T. Hirooka, M. Nakazawa, T. Komukai, and T. Sakano, “100 Gbit/s real-time digital coherent transmission over a 32 km legacy multi-mode graded-index fiber,” IEICE Electron. Express vol. 11, no. 15, 20140563, August (2014).
-
[449] T. Komukai, H. Kubota, T. Sakano, T. Hirooka, and M. Nakazawa, “Plug-and-play optical interconnection using digital coherent technology for resilient network based on movable and deployable ICT resource unit,” IEICE Trans. Comm. vol. E97-B, no. 7, pp. 1334-1341, July (2014).
-
[448] M. Nakazawa, M. Yoshida, and T. Hirooka, “The Nyquist laser,” Optica vol. 1, no. 1, pp. 15-22, July (2014).
-
[447] M. Nakazawa, “Exabit optical communication explored using 3M scheme,” Jpn. J. Appl. Phys. vol. 53, 08MA01 (2014).
-
[446] M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, "Adaptive 4~64 QAM real-time coherent optical transmission over 320 km with FPGA-based transmitter and receiver," Opt. Express vol. 22, no. 13, pp. 16520-16527, June (2014).
-
[445] M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, "QAM quantum stream cipher using digital coherent optical transmission," Opt. Express vol. 22, no. 4, pp. 4098-4107, February (2014).
2013
-
[444] T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, "Low-loss photonic crystal fiber fabricated by a slurry casting method," Opt. Express vol. 21, no. 25, pp. 30500-30506, December (2013).
-
[443] M. Yoshida, T. Hirooka, M. Nakazawa, K. Imamura, R. Sugizaki, and T. Yagi, "Detailed comparison between mode couplings along multi-core fibers and structural irregularities using a synchronous multi-channel OTDR system with a high dynamic range," Opt. Express vol. 21, no. 24, pp. 29157-29164, December (2013).
-
[442] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A single-channel 1.28 Tbit/s-58 km transmission in the 1.1 μm band with wideband GVD and slope compensation," Opt. Express vol. 21, no. 23, pp. 29055-29064, November (2013).
-
[441] Y. Wang, K. Kasai, T. Omiya, and M. Nakazawa, “120 Gbit/s, polarization-multiplexed 10 Gsymbol/s, 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator,” Opt. Express, vol. 21, no. 23, pp. 28290-28296, November (2013).
-
[440] M. Nakazawa, “Disaster-resilient networks and optical communication technologies,” Journal of the Institute of Electronics, Information and Communication Engineers, vol. 96, no. 10, pp. 748-751, October (2013).
-
[439] D. O. Otuya, K. Kasai, M. Yoshida, T. Hirooka, and M. Nakazawa, “A single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization,” Opt. Express, vol. 21, no. 19, pp. 22808-22816, September (2013).
-
[438] K. Harako, D. Seya, T. Hirooka, and M. Nakazawa, “640 Gbaud(1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance,” Opt. Express, vol. 21, no. 18, pp.21063-21076, September (2013).
-
[437] T. Sakano, Z. M. Fadlullah, T. Kumagai, A. Takahara, T. Ngo, H.Nishiyama, H. Kasahara, S. Kurihara, M. Nakazawa, F. Adachi, and N.Kato, “Disaster resilient networking - a new vision based on movable and deployable resource units,” IEEE Network, vol. 27, no. 4, pp.40-46, July/August (2013).
-
[436] T. Hirooka, K. Harako, P. Guan, and M. Nakazawa, “Second-order PMD-induced crosstalk between polarization-multiplexed signals and its impact on ultrashort optical pulse transmission,” J. Lightwave Technol. vol. 31, no. 5, pp. 809-814, March (2013).
-
[435] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “160 Gbit/s-300 km single-channel transmission in the 1.1 μm band with a precise GVD and slope compensation,” Opt. Express, vol. 21, no. 4, pp. 4303-4310, February (2013).
-
[434] T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express vol. 21, no. 3, pp. 2632-2641, February (2013).
2012
-
[433] T. Ono, Y. Hori, M. Yoshida, T. Hirooka, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane,” Opt. Express vol. 20, no. 21, pp. 23659-23665, October (2012).
-
[432] K. Tokuhira, F. Suzuki, M. Yoshida, and M. Nakazawa, “A Cesium optical atomic clock with high optical frequency stability,” IEICE Electron. Express, vol. 9, no. 18, pp. 1496-1503, September (2012).
-
[431] Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, "512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver," Opt. Express vol. 20, no. 21, pp. 23383-23389, September (2012).
-
[430] T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express, vol. 20, no. 18, pp. 19836-19849, August (2012).
-
[429] K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Marked performance improvement of 256 QAM transmission using a digital back-propagation method,” Opt. Express, vol. 20, no. 18, pp. 19815-19821, August (2012).
-
[428] T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express, vol. 20, no. 14, pp. 15001-15008, July (2012).
-
[427] M. Nakazawa, M. Yoshida, and T. Hirooka, “Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR,” Opt. Express, vol. 20, no. 11, pp. 12530-12540, May (2012).
-
[426] Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express, vol. 20, no. 11, pp. 12508-12514, May (2012).
-
[425] M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, "64 QAM real-time coherent transmission using FPGA-based receiver," IEICE Trans. Comm., vol. J95-B, no. 3, pp. 405-413, March (2012)
-
[424] K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-Carrier 800-Gb/s 32 RZ/QAM Coherent Transmission Over 225 km Employing a Novel RZ-CW Conversion Technique,” IEEE Photon. Technol. Lett., vol. 24, no. 5, pp. 416-418, March (2012).
-
[423] M. Nakazawa, T. Hirooka, M. Yoshida, and K. Kasai, “Ultrafast coherent optical communication,” IEEE J. Sel. Top. Quantum Electron., vol. 18, no. 1, pp. 363-376, Jan. (2012).
-
[422] M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, "Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train," Opt. Express vol. 20, no. 2. pp. 1129-1140, Jan. (2012).
2011
-
[421] M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, "Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission," Opt. Express, vol. 19, no. 26, pp. B574-B580, Dec. (2011).
-
[420] P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa, "2.56 Tbit/s/ch Polarization-Multiplexed DQPSK Transmission over 300 km Using Time-Domain Optical Fourier Transformation," Opt. Express, vol. 19, no. 26, pp. B567-B573, Dec. (2011).
-
[419] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, "A 10 GHz 1.1 ps Regeneratively Mode-Locked Yb Fiber Laser in the 1.1 μm Band," Opt. Express, vol. 19, no. 25, pp. 25426-25432, Dec. (2011).
-
[418] Y. Tomiyama, K. Harako, P. Guan, T. Hirooka, and M. Nakazawa, "Comparison between polarization-multiplexed DPSK and single-polarization DQPSK in 640 Gbaud, 1.28 Tbit/s-500 km single-channel transmission," Opt. Fiber Technol., invited paper, vol. 17, no. 5, pp. 439-444, Oct. (2011).
-
[417] T. Hirooka, T. Hirano, P. Guan, and M. Nakazawa, "PMD-induced crosstalk in ultrahigh-speed polarization-multiplexed optical transmission in the presence of PDL," J. Lightwave Technol., vol. 29, no. 19, pp. 2963-2970, Oct. (2011).
-
[416] K. Fukuchi and M. Nakazawa, "Ultra high capacity optical fiber transmission technologies," IEEJ Journal, vol. 131, no. 9, pp. 611-613, September (2011).
-
[415] Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express, vol. 8, no. 17, pp. 1444-1449, September (2011).
-
[414] K. Kasai, A. Mori, and M. Nakazawa,“1.5-μm Frequency-stabilized λ/4-shifted DFB LD employing an external fiber ring cavity with a linewidth of 2.6 kHz and an RIN of - 135 dB/Hz ,” IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1046-1048, August (2011).
-
[413] E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A.Scavennec, F. A. Kish, D. F. Welch, R. Nagarajan, C. H. Joyner, R. P.Schneider Jr., S. W. Corzine, M. Kato, P. W. Evans, M. Ziari, A. G. Dentai,J. L. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D.J. Richardson, F.Poletti, M. N. Petrovich, S. U. Alam, W. H. Loh and D. N. Payne, “Science and technology challenges in XXIst century optical communications,” Comptes Rendus Physique, vol. 12, no. 4, pp. 387-416, May (2011).
-
[412] P. Guan, H. C. Hansen Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, “Single-channel 1.28 Tbit/s-525 km DQPSK transmission using ultrafast time-domain optical Fourier transformation and nonlinear optical loop mirror,” IEICE Trans. Comm., vol. E94-B, no. 2, pp. 430-436, February (2011).
-
[411] M. Yoshida, S. Okamoto, T. Omiya, K. Kasai, and M. Nakazawa, “256 QAM digital coherent optical transmission using Raman amplifiers,” IEICE Trans. Comm., vol. E94-B, no. 2, pp. 417-424, February (2011).
-
[410] D. Yang, S. Kumar, and M. Nakazawa, “Investigation and comparison of digital backward propagation schemes for OFDM and single-carrier fiber-optic transmission systems,” Opt. Fiber Technol., vol. 17, no. 1, pp. 84-90, January (2011).
2010
-
[409] P. Guan, H. C. Hansen Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter,” IEEE Photon. Technol. Lett., vol. 22, no. 23, pp. 1735-1737, December (2010).
-
[408] T. Morisaki, M. Yoshida, and M. Nakazawa, “Optical frequency-tunable Cs atomic clock with a 9.19GHz mode-hop-free fiber laser,” IEICE Electron. Express, vol. 7, no. 21, pp. 1652-1658, November (2010).
-
[407] K. S. Abedin and M. Nakazawa, “Real time monitoring of a fiber fuse using an optical time-domain reflectometer,” Opt. Express, vol. 18, no. 20, pp. 21315-21321, Septermber (2010).
-
[406] T. Omiya, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “60 Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3 GHz bandwidth,” IEICE Electron. Express, vol. 7, no. 15, pp. 1163-1168, August (2010).
-
[405] T. Hirano, P. Guan, T. Hirooka, and M. Nakazawa, “640-Gb/s/channel single-polarization DPSK transmission over 525 km with ultrafast time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1042-1044, July (2010).
-
[404] M. Nakazawa, "Advances in information communication technology based on lasers," Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 79, no. 6, pp. 508-516, June (2010).
-
[403] F. Shohda, Y. Hori, M. Nakazawa, J. Mata, and J. Tsukamoto, “131 fs, 33 MHz all-fiber soliton laser at 1.07 μm with a film-type SWNT saturable absorber coated on polyimide,” Opt. Express, vol. 18, no. 11, pp. 11223-11229, May (2010).
-
[402] F. Shohda, M. Nakazawa, J. Mata, and J. Tsukamoto, “A 113 fs fiber laser operating at 1.56 μm using a cascadable film-type saturable absorber with P3HT-incorporated single-wall carbon nanotubes coated on polyamide,” Opt. Express, vol. 18, no. 9, pp. 9712-9721, April (2010).
-
[401] K. Kasai, T. Omiya, P. Guan, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-channel 400-Gb/s OTDM-32 RZ/QAM coherent transmission over 225 km using an optical phase-locked loop technique,” IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 562-564, April (2010).
-
[400] M. Nakazawa, “Recent progress on ultrafast/ultrashort/frequency-stabilized erbium-doped fiber lasers and their applications,” Frontiers of Optoelectronics in China, vol. 3, no. 1, pp. 38-44, March (2010).
-
[399] K. Koizumi, M. Yoshida, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 1.1 μm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 22, no. 5, pp. 293-295, March (2010).
-
[398] M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 185-187, February (2010).
2009
-
[397] F. Shohda, M. Nakazawa, R. Akimoto, and H. Ishikawa, “An 88 fs fiber soliton laser using a quantum well saturable absorber with an ultrafast inersubband transition,” Opt. Express, vol. 17, no. 25, pp. 22499-22504, December 2009.
-
[396] K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gbit/s photonic crystal fiber transmissions with 1.1 μm directly-modulated single-mode VCSEL,” IEICE Electron. Express, vol. 6, no. 22, pp. 1615-1620, November 2009.
-
[395] K. Koizumi, M. Yoshida, and M. Nakazawa, “10-GHz 11.5-ps pulse generation from a single-mode gain-switched InGaAs VCSEL at 1.1 μm,” IEEE Photon. Technol. Lett., vol. 21, no. 22, pp. 1704-1706, November 2009.
-
[394] P. Guan, M. Okazaki, T. Hirano, T. Hirooka, and M. Nakazawa, “Low-penalty 5x320 Gbit/s/single-channel WDM DPSK transmission over 525 km using time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 21, no. 21, pp. 1579-1581, November (2009).
-
[393] K. S. Abedin, T. Miyazaki, and M. Nakazawa, “Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection,” Opt. Lett., vol. 34, no. 20, pp. 3157-3159, October (2009).
-
[392] T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, “All-optical demultiplexing of 640-Gb/s OTDM-DPSK signal using a semiconductor SMZ switch,” IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 1574-1576, October (2009).
-
[391] M. Nakazawa, “20 years of EDFA and future prospects,” IEICE Trans. Electron. (in Japanese), vol. J92-C, no. 8, pp. 339-359, August (2009).
-
[390] K. Kasai and M. Nakazawa, “FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of -135 dB/Hz and a linewidth of 4 kHz,” Opt. Lett., vol. 34, no. 14, pp. 2225-2227, July (2009).
-
[389] S. Masuda, S. Niki, and M. Nakazawa, "Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator," Opt. Express, vol. 17, no. 8, pp. 6613-6622, April (2009).
-
[388] K. S. Abedin, M. Nakazawa, and T. Miyazaki, "Backreflected radiation due to a propagating fiber fuse," Opt. Express, vol. 17, no. 8, pp. 6525-6531, April (2009).
-
[387] M. Nakazawa, "Ultra-multilevel coherent QAM optical transmission technology," Review of Laser Engineering (in Japanese), vol. 37, no. 3, pp. 101-106, March (2009).
2008
-
[386] F. Shohda, T. Shirato, M. Nakazawa, K. Komatsu, and T. Kaino, "A passively mode-locked femtosecond soliton fiber laser at 1.5 μm with a CNT-doped polycarbonate saturable absorber," Opt. Express, vol. 16, no. 26, pp. 21191-21198, December (2008).
-
[385] M. Okazaki, P. Guan, T. Hirooka, M. Nakazawa, and T. Miyazaki, "160-Gb/s 200-km field transmission experiment with large PMD using a time-domain optical Fourier transformation technique," IEEE Photon. Technol. Lett., vol. 20, no. 24, pp. 2192-2194, December (2008).
-
[384] F. Shohda, T. Shirato, M. Nakazawa, J. Mata, and J. Tsukamoto, "147 fs, 51 MHz soliton fiber laser at 1.56 m with a fiber-connector-type SWNT/P3HT saturable absorber," Opt. Express, vol. 16, no. 25, pp. 20943-20948, December (2008).
-
[383] M. Nakazawa, K. Kasai, and M. Yoshida, "C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 m," Opt. Lett., vol. 33, no. 22, pp. 2641-2643, November (2008).
-
[382] T. Hirooka, M. Okazaki, P. Guan, and M. Nakazawa, "320-Gb/s single-polarization DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1872-1874, November (2008).
-
[381] T. Hirooka and M. Nakazawa, "All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse," IEEE Photon. Technol. Lett., vol. 20, no. 22, pp. 1869-1871, November (2008).
-
[380] T. Hirooka, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, “Stimulated Brillouin scattering in ultrahigh-speed in-phase RZ and CS-RZ OTDM transmission,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1694-1696, October (2008).
-
[379] Y. Nakajima, H. Inaba, F. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, "Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation," Opt. Comm., vol. 281, no. 17, pp. 4484-4487, September (2008).
-
[378] H. Goto, M. Yoshida, T. Omiya, K. Kasai, and M. Nakazawa, “Polarization and frequency division multiplexed 1Gsymbol/s, 64 QAM coherent optical transmission with 8.6bit/s/Hz spectral efficiency over 160km,” IEICE Electron. Express, vol. 5, no. 18, pp. 776-781, September (2008).
-
[377] H. T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, and M. Nakazawa, “A λ/4-shifted distributed-feedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1578-1580, September (2008).
-
[376] T. Hirooka, M. Okazaki, and M. Nakazawa, “A straight-line 160-Gb/s DPSK transmission over 1000 km with time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1094-1096, July (2008).
-
[375] T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating ,” Opt. Lett., vol. 33, no. 10, pp. 1102-1104, May (2008).
-
[374] M. Nakazawa and M. Yoshida, “Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique,” Opt. Lett., vol. 33. no. 10, pp. 1059-1061, May (2008).
-
[373] M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, “64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection,” Opt. Express, vol. 16, no. 2, pp. 829-840, January (2008).
-
[372] K. Kasai, J. Hongo, H. Goto, M. Yoshida, and M. Nakazawa, “The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission,” IEICE Electron. Express, vol. 5, no. 1, pp. 6-10, January (2008).
2007
-
[371] M. Yoshida, A. Ono, and M. Nakazawa, "10 GHz regeneratively mode-locked semiconductor optical amplifier fiber ring laser and its linewidth characteristics," Opt. Lett., vol. 32, no. 24, pp. 3513-3515, December (2007).
-
[370] T. Hirayama, M. Yakabe, M. Yoshida, M. Nakazawa, Y. Koga, and K. Hagimoto, “An ultrastable Cs optical atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser,” IEICE Trans. Electron. (in Japanese), vol. J90-C, no. 12, pp. 977-987, December (2007).
-
[369] M. Nakazawa, T. Hirooka, and M. Yoshida, “Optical fiber transmission of standard signals using optical combs,” The Review of Laser Engineering (in Japanese), vol. 35, no. 10, pp. 649-653, October (2007).
-
[368] A. Suzuki, Y. Takahashi, M. Yoshida, and M. Nakazawa, “An ultralow noise and narrow linewidth λ/4-shifted DFB Er-doped fiber laser with a ring cavity configuration,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1463-1465, October (2007).
-
[367] H. Hasegawa, Y. Oikawa, and M. Nakazawa, “A 10-GHz optoelectronic oscillator at 850 nm using a single-mode VCSEL and a photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 19, no. 19, pp. 1451-1453, October (2007).
-
[366] M. Nakazawa, H. Hasegawa, and Y. Oikawa, “10-GHz 8.7-ps pulse generation from a single-mode gain-switched AlGaAs VCSEL at 850 nm,” IEEE Photon. Technol. Lett,, vol. 19, no. 16, pp. 1251-1253, August (2007).
-
[365] M. Yoshida, K. Kasai, and M. Nakazawa, “Mode-hop-free, optical frequency tunable 40 GHz mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 43, no. 8, pp. 704-708, August (2007).
-
[364] M. Yoshida, T. Hirayama, M. Nakazawa, K. Hagimoto, and T. Ikegami, “Regeneratively mode-locked fiber laser with a repetition rate stability of 4.9×10-15 using a hydrogen maser phase-locked loop,” vol. 32, no. 13, pp. 1827-1829, July (2007).
-
[363] H. Hasegawa, Y. Oikawa, T. Hirooka, and M. Nakazawa, “40 Gbit/s-2 km photonic crystal fiber transmission with 850 nm singlemode VCSEL,” Electron. Lett., vol. 43, no. 11, pp. 642-644, May (2007).
-
[362] T. Hirayama, M. Yoshida, M. Nakazawa, K. Hagimoto, and T. Ikegami, “Mode-locked laser-type optical atomic clock with an optically pumped Cs gas cell,” Opt. Lett., vol. 32, no. 10, pp. 1241-1243, May (2007).
-
[361] J. Hongo, K. Kasai, M. Yoshida, and M. Nakazawa, “1-Gsymbol/s 64-QAM coherent optical transmission over 150 km,” IEEE Photon. Technol. Lett., vol. 19, no. 9, pp. 638-640, May (2007).
-
[360] A. Suzuki, Y. Takahashi, M.Yoshida, and M. Nakazawa, “A CW polarization-maintaining λ/4 shifted DFB Er-doped fiber laser at 1.54 μm,” IEICE Electron. Express, vol. 4, no. 8, pp. 251-257, April (2007).
-
[359] Y. Oikawa, H. Hasegawa, K. Suzuki, Y. Inoue, T. Hirooka, and M. Nakazawa, “4x10 Gb/s WDM transmission over a 5-km-long photonic crystal fiber in the 800-nm region,” IEEE Photon. Technol. Lett., vol. 19, no. 8, pp. 613-615, April (2007).
-
[358] K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express, vol. 4, no. 3, pp. 77-81, February (2007).
-
[357] M. Nakazawa, M. Yoshida, and T. Hirooka, “Ultra-stable regeneratively mode-locked laser as an opto-electronic microwave oscillator and its application to optical metrology,” IEICE Trans. Electron., Invited paper, vol. E90-C, no. 2, pp. 443-449, February (2007).
-
[356] H. Hasegawa, Y. Oikawa, and M. Nakazawa, “10 Gbit/s 2 km photonic crystal fiber transmission with 850 nm directly modulated singlemode VCSEL,” Electron. Lett., vol. 43, no. 2, pp. 117-119, January (2007).
2006
-
[355] T. Hirooka, K. Hagiuda, T. Kumakura, K. Osawa, and M. Nakazawa, “160 Gb/s-600 km OTDM transmission using time-domain optical Fourier transformation,” IEEE Photon. Technol. Lett., vol. 18, no. 24, pp. 2647-2649, December (2006).
-
[354] A. Suzuki, Y. Takahashi, and M. Nakazawa, “A polarization-maintained, ultranarrow FBG filter with a linewidth of 1.3 GHz,” IEICE Electron. Express, vol. 3, no. 22, pp. 469-473, November (2006).
-
[353] K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express, vol.3, no. 22, pp. 487-492, November (2006).
-
[352] M. Nakazawa and T. Hirooka, "Recent progress and future prospects for high-speed optical transmission technology using an ultrashort optical pulse train," Invited paper, IEICE Trans. Comm.(in Japanese), vol. J89-B, no. 11, pp. 2067-2081, November (2006).
-
[351] T. Hirooka, T. Kumakura, K. Osawa, and M. Nakazawa, “Comparison of 40 GHz optical demultiplexers using SMZ switch and EA modulator in 160 Gbit/s-500 km OTDM transmission,” IEICE Electronics Express, vol. 3, no. 17, pp. 397-403, September (2006).
-
[350] Y. Oikawa, H. Hasegawa, T. Hirooka, M.Yoshida, and M. Nakazawa, "Ultra-broadband dispersion measurement of photonic crystal fiber with pico-second streak camera and group-delay-frees supercontinuum," IEICE Trans. Electron. (in Japanese), vol. J89-C, no. 7, pp. 450-457, July (2006).
-
[349] T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” Invited paper, J. Lightwave Technol., vol. 24, no. 7, pp. 2530-2540, July (2006).
-
[348] H. Inaba, Y. Daimon, F. -L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express, vol. 14, no. 12, pp. 5223-5231, June (2006).
-
[347] M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilised laser,” Electron. Lett., vol. 42, no. 12, pp. 710-712, June (2006).
-
[346] M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, “Polymer saturable absorber materials in the 1.5 μm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser,” Opt. Lett., vol. 31, no. 7, pp. 915-917, April (2006).
-
[345] H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express, vol. 3, no.6, pp. 109-114, March (2006).
-
[344] M. Nakazawa and T. Hirooka, “ABCD matrix formalism of time-domain optical Fourier transformation for distortion-free pulse transmission,” IEICE Electron. Express, vol. 3, no. 4, pp. 74-79, February (2006).
2005
-
[343] H. Hasegawa, M. Kikegawa, M. Yoshida, T. Hirooka, and M. Nakazawa, "Observation of optimum air-hole tapering of splicing between a conventional fiber and a photonic crystal fiber and analysis of reduction of Fresnel reflection," IEICE Trans. Electron., vol. J88-C, no. 10, pp. 779-787, October (2005).
-
[342] K. Kasai, M. Yoshida, and M. Nakazawa, "Acetylene (13C2H2) stabilized single-polarization fiber laser," IEICE Trans. Electron., vol. J88-C, no. 9, pp. 708-715, September (2005).
-
[341] M. Yakabe, K. Nito, M. Yoshida, and M. Nakazawa, "Microwave frequency tuning characteristics of an opto-microwave oscillator made of fiber laser and its application to Ramsey fringe observation of Cs atoms," IEICE Trans. Comm., vol. J88-B, no. 9, pp. 1829-1836, September (2005).
-
[340] M. Nakazawa and T. Hirooka, “Distortion-free optical transmission using time-domain optical Fourier transformation and transform-limited optical pulses,” J. Opt. Soc. Am. B, vol. 22, no. 9, pp. 1842-1855, September (2005).
-
[339] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe,“Ultrahigh-speed distortion-free optical pulse transmission using time-domain optical Fourier transformation,”IEICE Trans. Comm. (in Japanese), vol. J88-B, no. 8, pp. 1402-1410, August (2005).
-
[338] H. Hasegawa, T. Hirooka, and M. Nakazawa, “A new method for optimum dispersion designing of zero-dispersion and dispersion-flattened photonic crystal fibers,”IEICE Trans. Electron. (in Japanese), vol. J88-C, no. 7, pp. 519-527, July (2005).
-
[337] M. Yakabe, K. Nito, M. Yoshida, M. Nakazawa, Y. Koga, K. Hagimoto, and T. Ikegami, “Ultrastable cesium atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser,” Opt. Lett., vol. 30, no. 12, pp. 1512-1514, June (2005).
-
[336] K. Haneda, M. Yoshida, M. Nakazawa, H. Yokoyama, and Y. Ogawa, “Linewidth and relative intensity noise measurements of longitudinal modes in ultrahigh-speed mode-locked laser diodes,” Opt. Lett., vol. 30, no. 9, pp. 1000-1002, May (2005).
-
[335] K. Hagiuda, T. Hirooka, M. Nakazawa, S. Arahira, and Y. Ogawa, “40-GHz, 100-fs stimulated-Br/p>llouin-scattering-free pulse generation by combining a mode-locked laser diode and a dispersion-decreasing fiber,” Opt. Lett., vol. 30, no. 6, pp. 670-672, March (2005).
-
[334] K. Haneda, M. Yoshida, H. Yokoyama, Y. Ogawa, and M. Nakazawa, "Measurements of longitudinal linewidth and relative intensity noise in ultrahigh-speed mode-locked semiconductor lasers, " IEICE Trans. Electron., vol. J88-C, no. 3, pp. 161-168, March (2005).
-
[333] T. Hirooka, S. Ono, K. Hagiuda, and M. Nakazawa, “Stimulated Brillouin scattering in dispersion-decreasing fiber with ultrahigh-speed femtosecond soliton pulse compression,” Opt. Lett., vol. 30, no. 4, pp. 364-366, Feb. (2005).
-
[332] M. Nakazawa and T. Hirooka, “Distortion-free transmission of ultrashort optical pulses using time-domain optical Fourier transformation,” Japanese Journal of Optics (in Japanese), vol. 34, no. 1, pp. 26-31, January (2005).
2004
-
[326] T. Hirooka and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion, " Opt. Lett., vol. 29, no. 5, pp. 498-500, March (2004).
-
[327] M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, "Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses, " IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1059-1061, April (2004).
-
[328] T. Hirooka, Y. Hori, and M. Nakazawa, "Gaussian and sech approximations of mode field profiles in photonic crystal fibers, " IEEE Photon. Technol. Lett., vol. 16, no. 4, pp. 1071-1073, April (2004).
-
[329] M. Yoshida, T. Yaguchi, S. Harada, and M. Nakazawa, "A 40 GHz regeneratively and harmonically mode-locked erbium-doped fiber laser and its longitudinal-mode characteristics, " IEICE Trans. Electron., vol. E87-C, no. 7, pp. 1166-1172, July (2004).
-
[330] T. Hirooka, M. Nakazawa, F. Futami, and S. Watanabe, "A new adaptive equalization scheme for 160 Gbit/s transmitted signals using time-domain optical Fourier transformation, " IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2371-2373, October (2004).
-
[331] M. Nakazawa, " Photonic crystal fibers and their applications, " Japanese Journal of Applied Physics (Ouyou-Butsuri, in Japanese), vol. 73, no. 11, pp. 1409-1417, November (2004).
-
[325] M. Nakazawa, “Photonic crystal fibers and their application to ultrashort pulse propagation,” Japanese Journal of Optics (in Japanese), vol. 32, no. 10, pp. 606-612, October (2003).
-
[324] S. Choi, M. Yoshida, and M. Nakazawa, “Measurements of longitudinal linewidths of 10 GHz, picosecond mode-locked erbium-doped fiber lasers using a heterodyne detection method,” IEICE Trans. Electron. (in Japanese), vol. J86-C, no. 10, pp. 1054-1062, October (2003).
-
[323] M. Yoshida, M. Kikegawa, N. Nishimura, and M. Nakazawa, “Observation of huge Fresnel reflection at a splicing point between a photonic crystal fiber and a conventional fiber and its suppression,” IEICE Trans. Electron. (in Japanese), vol. J86-C, no. 9, pp. 1007-1016, September (2003).
-
[322] M. Nakazawa, “Ultrafast OTDM transmission technology,” Journal of IEICE (in Japanese), vol. 86, no. 8, pp. 588-593, August (2003).
-
[321] M. Nakazawa, “High precision frequency standards using mode-locked fiber lasers,” The Review of Laser Engineering, vol. 31, no. 7, pp. 443-449, July (2003).
-
[320] M. Nakazawa, “Optical amplifiers and their application to fiber lasers,” Japanese Journal of Optics (in Japanese), vol. 32, no. 2, pp. 119-128, February (2003).
-
[319] H. Inaba, A. Onae, Y. Akimoto, T. Komukai, and M. Nakazawa, “Observation of acetylene molecular absorption line with tunable, single-frequency, and mode-hop-free erbium-doped fiber ring laser,” IEEE J. Quantum Electron., vol. 38, no. 10, pp. 1325-1330, October (2002).
-
[318] M. Nakazawa, “Photonic crystal fibers,” The Review of Laser Engineering, vol. 30, no. 8, pp. 426-434, August (2002).
-
[317] T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K. R. Tamura, K. Uchiyama, and T. Morioka, “Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique,” IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 549-551, April (2002).
-
[316] M. Nakazawa, T. Yamamoto, and K. R. Tamura, "Ultrahigh-speed OTDM transmission beyond 1 Tera bit-per-second using a femtosecond pulse train," IEICE Trans. Electron., vol. E85-C, no. 1, pp. 117-125 January (2002).
-
[315] K. R. Tamura, Y. Inoue, K. Sato, T. Komukai, A. Sugita, and M. Nakazawa, “A discretely tunable mode-locked laser with 32 wavelengths and 100-GHz channel spacing using an arrayed waveguide grating,” IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1227-1229, November (2001).
-
[314] T. Yamamoto, K. R. Tamura, and M. Nakazawa, "1.28 Tbit/s-70km OTDM femtosecond-pu1se transmission using third- and fourth-order simultaneous dispersion compensation with a phase modu1ator," IEIEC of Japan, B, vol. J84-B, no. 9, pp. 1587-1597, September (2001).
-
[313] T. Komukai, T. Inui, and M. Nakazawa, "Origin of group delay ripple in chirped fiber Bragg gratings and its effective reduction method," IEIEC of Japan, C, vol. J84-C, no.8, pp. 673-680, August (2001).
-
[312] S. Kawanishi, T. Yamamoto, M. Nakazawa, and M. M. Fejer, “High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide,” Electron. Lett., vol. 37, no. 13, pp. 842-844, June (2001).
-
[311] K. R. Tamura and M. Nakazawa, "54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor," Opt. Lett., vol. 26, no.11, pp. 762-764, June (2001).
-
[310] K. R. Tamura, and M Nakazawa, "A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror," IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 526-528, May (2001).
-
[309] M. Nakazawa and K. Suzuki, " Cesium optical atomic clock: an optical pulse that tells the time," Opt. Lett., vol. 26, pp. 635-637, May (2001).
-
[308] T. Yamamoto and M. Nakazawa," Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission," Opt. Lett., vol. 26, pp. 647-649, May (2001).
-
[307] M. Nakazawa, A. Sahara, and H. Kubota," Propagation of a soliton-like nonlinear pulse in average normal group-velocity dispersion and its unsuitability for a high-speed, long-distance optical communication," J. Opt. Soc. Amer., vol. B-18, pp. 409-418, April (2001).
-
[306] T. Inui, T. Komukai, M. Nakazawa," Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Opt. Commun., vol. 190, pp. 1-4, April (2001).
-
[305] T. Komukai, T. Inui, and M. Nakazawa, " Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique," Electron. Lett., vol. 37, no. 7, pp. 449-451, March (2001).
-
[304] S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T. Tak," Ultrashort optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter," IEEE/OSA, J. Lightwave Technol., vol. 19, no.2, pp. 266-271, February (2001).
-
[303]S. Yagi, T. Maruyama, H. Nagai, T. Izawa, K. Washio, Y. Nagaki, K. Goto, M. Nakazawa, and T. Yuuzu, "Development of lasers in the 20th century and prospect in the future," The Review of Laser Engineering, vol. 29, no. 1, pp. 37-55 January (2001).
-
[302] A. Sahara, T. Komukai, E. Yamada and M. Nakazawa, " 40 Gbit/s return-to-zero transmission over 500 km of standard fibre using chirped fibre Bragg grating with small group delay ripples," Electron. Lett., vol. 37, pp. 8-9, January (2001).
-
[301] M. Nakazawa," Solitons for breaking barriers to terabit/second WDM and OTDM transmission in the next Millennium," IEEE, J, Selected Topics in Quantum Electronics (Millennium Issue invited paper), vol. 6, No. 6, pp. 1332-1343, November/December(2000).
-
[300] T. Inui, T. Komukai, and M. Nakazawa, " A wavelength-tunable Dispersion equalizer using a nonlinearly chirped fiber Bragg grating pair mounted on multilayer piezoelectric transducer," Photon. Tech. Lett., vol. 12, pp. 1668-1670, December (2000).
-
[299] M. Nakazawa and E.Yoshida," A 40 GHz, 850 fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser," IEEE, Photon. Tech. Lett.,, vol. 12, No. 12, pp. 1613-1615 December(2000).
-
[298] M. Nakazawa, T. Yamamoto, K. R. Tamura, " 1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron., Lett., vol. 36, No. 24, pp. 2027-2029, November (2000).
-
[297] H. Kubota, K. Tamura, and M. Nakazawa, " Effect of ASE noise on coherence for supercontinuum light source by soliton compression," IEICE Trans. Electron. (in Japanese), vol. J83-C, No. 11, pp. 1005-1011, November (2000).
-
[296] H. Kubota and M. Nakazawa, " Simulation method for optical soliton pulse propagation," J. of IEICE (in Japanese), vol. 83, No. 11, pp. 866-871, November (2000).
-
[295] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa, " 40-Gb/s RZ transmission over transoceanic distance in a dispersion managed standard fiber using a modified inline synchronous modulation method," IEEE/OSA, J. Lightwave Technol., vol. 18, No. 10, pp. 1364-1373, October (2000).
-
[294] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, " Recent progress in soliton transmission technology," American Inst. of Physics, Chaos (Invited paper), vol. 10, No. 3, pp. 486-514, September (2000).
-
[293] T. Komukai, T. Inui, and M. Nakazawa, " Group delay ripple reduction and reflectivity increase in a chirped fiber Bragg grating by multiple-overwriting of a phase mask with an electron beam," IEEE, Photon. Tech. Lett., vol. 12, No. 7, July (2000).
-
[292] A. Sahara, T. Inui, T. Komukai, H. Kubota, and M. Nakazawa, " 40-Gb/s RZ transmission over transoceanic distance in a dispersion managed standard fiber using a new inline synchronous modulation method," IEEE, Photon. Tech. Lett., vol. 12 No. 6, pp. 720-722, June (2000).
-
[291] H. Inaba, Y. Akimoto, K. Tamura, E. Yoshida, T. Komukai, and M. Nakazawa, " Experimental observation of mode behavior in erbium-doped optical fiber ring laser," Optics Commun., vol. 180, pp. 121-125, June(2000).
-
[290] K. R. Tamura, H. Kubota, and M. Nakazawa, " Fundamentals of stable continuum generation at high repetition rate," IEEE, J. Quantum Electron., vol. 36, No. 7, pp. 773-779, July (2000).
-
[289] T. Yamamoto, E. Yoshida, K. R. Tamura, and M. Nakazawa,"100 km transmission of 640 Gbit/s OTDM signal using femtosecond pulses," IEICE Trans. Commun. (in Japanese), Vol. J83-B No. 5, pp. 625-633, May (2000).
-
[288] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada and A. Sahara," Ultrahigh-speed, long-distance TDM and WDM soliton transmission technologies," IEEE, J. Selected Topics in Quantum Electronics, vol. 6, no. 2, pp. 363-394, April (2000).
-
[287] T. Komukai, T. Inui, and M. Nakazawa, "The design of dispersion equalizers using chirped fiber Bragg gratings", IEEE J. Quantum Electron., vol. 36, pp. 409-417, April (2000).
-
[286] T. Yamamoto, E. Yoshida, K. Tamura, K. Yonenaga, and M. Nakazawa, "640 Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and "reverse dispersion fiber", IEEE Photon. Technol. Lett., Vol. 12, No. 3, pp. 353-355, March (2000).
-
[285] K. Suzuki, H. Kubota, A. Sahara, and M. Nakazawa, "640 Gbit/s (40 Gbit/s x 16 channel) dispersion-managed DWDM soliton transmission over 1,000 km with a spectral efficiency of 0.4 bit/Hz", Electron. Lett., vol. 36, No. 5, pp.443-445, March (2000).
-
[284] E. Yoshida, N. Shimizu, and M. Nakazawa, "A 40 GHz, 0.9 ps regeneratively mode-locked fiber laser with a tuning range of 1530 - 1560 nm", IEEE Photon. Technol. Lett., vol. 11, No. 12, pp.1587-1589, December (1999).
-
[283] H. Kubota, K. Tamura, and M. Nakazawa, "Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton-amplified spontaneous-emission interaction", J. Opt. Soc. Am. B, vol. 16, No. 12, pp. 2223-2232, December (1999).
-
[282] E. Yoshida, K Tamura, and M. Nakazawa," Mode-locked fiber ring lasers," The Review of Laser Engineering (In Japanese), vol. 27, No.11, pp. 756-761, November (1999).
-
[281] K. Tamura, T. Komukai, and M. Nakazawa, "A new optical routing technique with a subcarrier clock controlled wavelength converter", IEEE Photon. Technol. Lett., vol. 11, No. 11, pp. 1491-1493, November (1999).
-
[280] M. Nakazawa, K Suzuki, and H. Kubota, "160 Gbit/s (80 Gbit/s x 2 channels) WDM soliton transmission over 10,000 km using in-line synchronous modulation", Electron. Lett., vol. 35, No. 16, pp. 1358-1359, September (1999).
-
[279] T. Komukai, T. Imai, M. Nakazawa," Design of dispersion equalizers using chirped Bragg gratings," IEICE Trans. Electron. (In Japanese), Vol. J82-C-I, pp. 359-369, June (1999).
-
[278] E. Yoshida and M. Nakazawa," Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laser," IEEE Photonics Tech. Lett., vol. 11, pp. 548-550, May (1999)
-
[277] E. Yamada, T. Imai, T. Komukai, and M. Nakazawa," 10 Gbit/s soliton transmission over 2900 km using 1.3 mmsinglemode fibres and dispersion compensation using chirped fibre Bragg gratings," Electron. Lett., vol. 35, pp. 728-729, April (1999).
-
[276] E. Yoshida and M. Nakazawa," Ultrashort pulse generation at high repetition rate from mode-locked fiber lasers," The Review of Laser Engineering (In Japanese), vol. 27, pp. 274-280, April (1999).
-
[275] K. Suzuki, H. Kubota, E. Yamada, A. Sahara, and M. Nakazawa," 40 Gbit/s soliton transmission field experiment using dispersion management," The Review of Laser Engineering (In Japanese), vol. 27, pp. 268-273, April (1999).
-
[274] Y. Yamabayashi, H. Toba, and M. Nakazawa," State-of-the-art and future perspectives of time division multiplexing (TDM) high bit rate optical transmission," The Review of Laser Engineering (In Japanese), vol. 27, pp. 231-239, April(1999).
-
[273] T. Yamamoto, E. Yoshida, and M. Nakazawa," Demultiplexing of subterabit TDM signal by using ultrafast nonlinear optical loop mirror," IEICE Trans. Electron., C-I (In Japanese), vol. J82, pp. 109-116, March (1999).
-
[272] K. R. Tamura and M. Nakazawa," Femtosecond soliton generation over 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber," IEEE, Photon. Tech. Lett., vol. 11, pp. 319-321, March (1999).
-
[271] M. Nakazawa, H. Kubota, and K. Tamura," Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett., vol. 24, pp. 318-320, March (1999).
-
[270] A. Sahara, H. Kubota, and M. Nakazawa," Comparison of the dispersion allocated WDM (10 Gbit/sx 10 channels) optical soliton and NRZ systems using a Q map," Opt. Commun., vol. 160, pp. 139-145, February (1999).
-
[269] K. R. Tamura, and M. Nakazawa," Spectral-smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror," IEEE, Photon. Tech. Lett., vol. 11, pp.230-233, February (1999).
-
[268] M. Nakazawa, K. Suzuki and H. Kubota," Single-channel 80 Gbit/s soliotn transmission over 10000 km using in-line synchronous modulation," Electron. Lett., vol. 35, pp. 162-163, January (1999).
-
[267] M. Nakazawa, "Mode-locked fiber laser technology for ultrahigh-speed TDM optical transmission," NTT R&D Journal Special Issue on Challenges to Terabit/s Communication Technologies (In Japanese), vol. 48, pp. 59-66, January (1999).
-
[266] Y. Yamabayashi, M. Nakazawa, and K. Takiguchi," Terabit transmission technologies," NTT R&D Journal Special Issue on Challenges to Terabit/s Communication Technologies (In Japanese), vol. 48, pp. 43-58, January (1999).
-
[265] A. Sahara, H. Kubota, and M. Nakazawa, "Ultra-high speed soliton transmission in presence of polarisation mode dispersion using in-line synchronous modulation," Electron. Lett., vol. 35, pp. 76-77, January (1999).
-
[264] T. Imai, T. Komukai, and M. Nakazawa, "Second- and third-order dispersion compensation of picosecond pulses achieved by combining two nonlinearly chirped fibre Bragg gratings," Electron. Lett., vol. 34, pp. 2422-2423, December (1998).
-
[263] K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K. Tamura, A. Sahara and M. Nakazawa," 40 Gbit/s soliton transmission field experiment over 1360 km using in-line soliton control," Electron. Lett., vol. 34, pp. 2143-2144, October (1998).
-
[262] A. Sahara, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Imai, K. Tamura and M. Nakazawa," Single channel 40 Gbit/s soliton transmission field experiment over 1000 km in Tokyo metropolitan optical loop network using dispersion compensation," Electron. Lett., vol. 34, pp. 2154-2155, October (1998).
-
[261] K. Tamura and M. Nakazawa, "Timing jitter of solitons compressed in dispersion-decreasing fibers," Opt. Lett., vol. 23, No. 17, pp. 1360-1362, September (1998).
-
[260] T. Komukai and M. Nakazawa, "Fabrication of non-linearly chirped fiber gratings for higher-order dispersion compensation," Opt. Commun., vol. 154, pp. 5-8 (1998)
-
[259] E. Yoshida and M. Nakazawa," Wavelength tunable 1.0 ps pulse generation in 1.530-1.555 μm region from PLL, regeneratively modelocked fibre laser," Electron. Lett., vol. 34, No. 18, pp 1753-1754, September (1998).
-
[258] H. Inaba, Y. Akimoto, K. Tamura, E Yoshida, T. Komukai, and M. Nakazawa," A single-frequency and single-polarization fiber ring laser using a 5 GHz fiber Bragg grating," IEICE Trans. Electron., C-I, vol. J81-C-I, No. 8, pp. 451-459, August (1998).
-
[257] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission," IEEE J. Quantum Electron., vol. 34, No. 7, pp. 1075-1081, July (1998).
-
[256] M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida," Coherence degradation in the process of supercontinuum generation in an optical fiber," Optical Fiber Technology, 4, pp.215-223, April, (1998)
-
[255] T. Imai, T. Komukai, and M. Nakazawa," Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient," IEEE, Photon. Tech. Lett., vol. 10, No. 6, pp. 845-847, June (1998).
-
[254] E. Yoshida, T. Yamamoto, A. Sahara, and M. Nakazawa," 320 Gbit/s TDM transmission over 120 km using 400 fs pulse train," Electron. Lett., vol. 34, No. 10, pp. 1004-1005, April (1998).
-
[253] T. Yamamoto, E. Yoshida, and M. Nakazawa," Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals," Electron. Lett., vol. 34, No. 10, pp. 1013-1014, May (1998).
-
[252] M. Nakazawa, E. Yoshida, T. Yamamoto, and A. Sahara," TDM single channel 640 Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror," Electron. Lett., vol. 34, No. 9, pp. 907-908, April (1998).
-
[251] T. Komukai, and M. Nakazawa," Long-phase error-free fiber Bragg gratings," IEEE, Photon. Tech. Lett., vol. 10, No. 5, pp. 687-689, May (1998).
-
[250] T. Yamamoto, and M. Nakazawa," Efficient optical pulse compression with optical gain via four-wave mixing," IEICE Trans. Electron., C-I, vol. J81-C-I, No. 3, pp. 148-157, March (1998).
-
[249] E. Yoshida, K. Tamura, and M. Nakazawa," Intracavity dispersion effects of a regeneratively and harmonically FM mode-locked erbium-doped fiber laser," IEICE Trans. Electron., vol. E81-C, No. 2, pp. 189-194, February (1998).
-
[248] K. Tamura, E. Yoshida, and M. Nakazawa," Forced phase modulation and self phase modulation effects in dispersion-tuned mode-locked fiber lasers," IEICE Trans. Electron., vol. E81-C, No. 2, pp. 195-200, February (1998).
-
[247] K. Suzuki, H. Kubota, A. Sahara and M. Nakazawa,"40Gbit/s single channel optical soliton transmission over 70000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 34, No. 1, pp. 98-99, January (1998).
-
[246] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada," 160 Gbit/s WDM (20 Gbit/s x 8 channels) soliton transmission over 10000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 34, No. 1, pp. 103-104, January (1998).
-
[245] T. Yamamoto and M. Nakazawa," Active optical pulse compression with a gain of 29.0 dB by using four-wave mixing in an optical fiber," IEEE, Photon. Tech. Lett., vol. 9, No. 12, pp. 1595-1597, December (1997).
-
[244] E. Yoshida and M. Nakazawa," Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser," Opt. Lett., vol. 22, No. 18, pp. 1409-1411, September (1997).
-
[243] M. Nakazawa," Recent progress in optical soliton communication and its future prospects-Analogy between optical pulse transmission and laser mode-locking," Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vo. 66, no. 9, pp. 922-932 (1997).
-
[242] M. Nakazawa, "Advantages of dispersion-allocated soliton by comparison with conventional NRZ and RZ pulse transmission at zero GVD," TOPS, OSA, vol. 12, System Technologies, pp. 299-304, (1997).
-
[241] M. Nakazawa, E. Yamada, H. Kubota, T. Yamamoto, and A. Sahara," Numerical and experimental comparison of soliton, RZ pulse and NRZ pulses under two-step dispersion allocation," Electron. Lett., vol. 33, No. 17, pp. 1480-1482, Aug., (1997).
-
[240] A. Sahara, H. Kubota, and M. Nakazawa, "Optimum fiber dispersion for two-step dispersion-allocated optical soliton, RZ at zero GVD and NRZ systems," IEEE, Photon. Tech. Lett., vol. 9, No. 8, pp. 1179-1181, Aug., (1997).
-
[239] T. Komukai, K. Tamura, and M. Nakazawa," An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE, Photon. Tech. Lett., vol. 9, No. 7, pp. 934-936, July (1997).
-
[238] M. Nakazawa and E. Yoshida and K. Tamura," Ideal phase-locked-loop (PLL) operation of a 10 GHz erbium-doped fibre laser using regenerative modelocking as an optical voltage controlled oscillator," Electron. Lett., vol. 33, No. 15, pp. 1318-1319, July(1997).
-
[237] M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, and E. Yamada,"100 Gbit/s WDM (20 Gbit/sx5 channels) soliton transmission over 10,000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 33, No. 14, pp. 1233- 1234, July (1997).
-
[236] A. Sahara, H. Kubota, and M. Nakazawa," Experiments and analyses of 20 Gbit/s soliton transmission systems using installed optical fiber cables," IEICE Trans. Electron., C-I, vol. J80-C-I, No. 5, pp. 204-212, May (1997).
-
[235] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa," Wavelength tunable Q-switched fiber laser using fiber Bragg gratings," IEICE Trans. Electron., C-I, Vol. J80-C-I, No. 5, pp. 195-203, May (1997).
-
[234] T. Yamamoto, T. Imai, T. Komukai, and M. Nakazawa," Demutliplexing and routing of TDM signal using wavelength conversion by fiber four-wave mixing and wavelength routing by fiber gratings," IEICE Trans. Electron., C-I, vol. J80-C-I, No. 5, pp. 186-194, May (1997).
-
[233] E. Yamada, H. Kubota, T. Yamamoto, A. Sahara, and M. Nakazawa," 10 Gbit/s, 10,600 km, dispersion-allocated soliton transmission using conventional 1.3 μm singlemode fibers," Electron. Lett., vol. 33, No. 7, pp. 602-603, March (1997).
-
[232] M. Nakazawa, A. Sahara, and H. Kubota," Marked increase in the power margin through the use of dispersion-allocated soliton and evaluation of transmission characteristics using Q mapping---Comparison between D-A soliton, NRZ pulse and RZ pulse at zero GVD---," IEICE Trans. Commun., B-I, vol. J80-B-I, N. 3, pp. 148-158, March (1997).
-
[231] T. Yamamoto and M. Nakazawa," Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching," IEEE, Photon.Tech. Lett., vol. 9, No.3, pp. 327-329, March (1997).
-
[230] E. Yoshida, K. Tamura, E. Yamada, and M. Nakazawa," Femtosecond fiber laser at 10 GHz and its application as a multi-wavelength optical pulse source," IEICE Trans. Electron., C-I, vol. J80-C-I, No. 2, pp. 70-77, February (1997).
-
[229] T. Imai and M. Nakazawa," Optical cable amplifier," The Laser Society of Japan, Rev. of Laser Eng., vol. 25, pp. 121-125 February (1997).
-
[228] T. Komukai, T. Yamamoto, T. Imai, and M. Nakazawa," Application of fiber Bragg gratings to spectral filtering," IEICE Trans. Electron., C-I, Vol. J80-C-I, No.1, pp. 32-40, January (1997).
-
[227] T. Komukai, T. Yamamoto, T. Imai, M. Nakazawa, "Fabrication of high quality fiber Bragg grating and its wavelength tuning", IEICE Trans. Electron., C-I, Vol. J79-C-I, No.11, pp. 413-419, November (1996)
-
[226] K. Tamura and M. Nakazawa," Pulse energy equalization in harmonically FM mode-locked lasers with slow gain," Opt. Lett., vol. 21, No.23, pp. 1930-1932, December (1996).
-
[225] K. Tamura and M. Nakazawa," Dispersion-tuned harmonically mode-locked fiber laser for self-synchronization to external clock," Opt. Lett., vol. 21, NO. 24, pp. 1984-1986, December (1996).
-
[224] T. Komukai, and M. Nakazawa," Fabrication of high -quality long-fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO2 defects," IEEE, Photon. Tech. Lett., vol. 8, No. 11, pp. 1495-1497, November (1996).
-
[223] T. Imai, T. Komukai, T. Yamamoto, and M. Nakazawa," A wavelength tunable Q-switched erbium-doped fiber laser with fiber Bragg grating mirrors," Jpn. J. Appl. Phys. vol. 35, No. 10A, pp. L1275-1277, October (1996).
-
[222] K. Tamura, T. Komukai, and M. Nakazawa," Optimization of power extraction in a high-power soliton fiber ring laser containing a chirped fiber grating," Appl. Phys. Lett., vol. 69, No. 11 , pp. 1535-1537 Sept. (1996).
-
[221] M. Nakazawa, H. Kubota, and E. Yamada," Generation and transmission of optical soliton pulses," IEICE Trans. Electron., C-II, vol. J79-C-II, No. 8, pp. 265-277, August (1996).
-
[220] M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura," Marked increase in the power margin through the use of a dispersion allocated soliton," IEEE, Photon. Tech. Lett., vol. 8, No. 8, pp. 1088-1090, Aug., (1996).
-
[219] M. Nakazawa, K. Suzuki, H. Kubota, and E. Yoshida," 60 Gbit/s WDM (20 Gbit/sx3 unequally spaced channels) soliton transmission over 10000 km using in-line synchronous modulation and optical filtering," Electron. Lett., vol. 32, No. 18 , pp. 1686-1687, August (1996).
-
[218] E. Yoshida and M. Nakazawa," 80-200 GHz erbium-doped fibre laser using a rational harmonic mode-locking technique," Electron. Lett., vol. 32, No. 15, pp. 1371-1372, July (1996).
-
[217] M. Nakazawa and E. Yoshida," Direct generation of a 750 fs, 10 GHz pulse train from a regeneratively mode-locked fibre laser with multiple harmonic modulation," Electron. Lett., vol. 32, No. 14, pp. 1291-1293, July (1996).
-
[216] M. Nakazawa, E. Yoshida, and K. Tamura," 10 GHz, 2 ps regenratively and harmonically FM mode-locked erbium-fibre ring laser," Electron. Lett., vol. 32, No. 14, July, pp. 1285-1287, (1996).
-
[215] M. Nakazawa, K. Suzuki, and E. Yamada, "NOLM oscillator and its injection locking technique for timing clock extraction and demutiplexing," Electron. Lett., vol. 32, No. 12, pp. 1122-1123, June (1996).
-
[214] M. Nakazawa, "Recent progress in long-distance soliton communication," Laser Society of Japan, Rev. of Laser Eng., vol. 24, No. 6, June, pp. 633-640 (1996).
-
[213] M. Nakazawa, E. Yoshida, E. Yamada, and Y. Kimura," A repetition-rate stabilized and tunable, regeneratively mode-locked fiber laser using an offset-locking technique," Jpn. J. Appl. Phys., vol. 35, June, pp. L691-694, (1996).
-
[212] A. Sahara, H. Kubota, and M. Nakazawa," Q-factor contour mapping for evaluation of optical transmission systems:soliton against NRZ against RZ pulse at zero group velocity dispersion," Electron. Lett., vol. 32, May, pp. 915-916, (1996).
-
[211] K. Tamura, E. Yoshida, and M. Nakazawa," Generation of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a high power femtosecond source, " Electron. Lett., vol. 32, No. 18, pp. 1691-1692, April (1996).
-
[210] K. Tamura, E. Yoshida, E. Yamada, and M. Nakazawa," Generation of a 0.5 W average power train of femtosecond pulses at 10 GHz in the 1.55 μm region" Electron.Lett., vol . 32, pp. 835-836 April (1996).
-
[209] M. Nakazawa, K. Suzuki, H. Kubota, Y. Kimura, E. Yamada, K. Tamura, T. Komukai, and T. Imai,"40 Gbit/s WDM(10 Gbit/sx4 unequally spaced channels) soliton transmission over 10000 km using synchronouos modulation and narrow band optical filtering," Electron. Lett., vol. 32, No. 9, April, pp. 828-829, (1996).
-
[208] M. Nakazawa," Recent progress in ultra-high speed optical soliton communication," J. of IEICE, vol. 79, No. 3, March, pp. 259-271, (1996).
-
[207] M. Nakazawa, H. Kubota, and K. Tamura, "Nonlinear pulse transmission through an optical fiber at zero-average group velocity dispersion," IEEE, Photon. Tech. Lett., vol. 8, No. 3, March, pp. 452-454, (1996).
-
[206] M. Nakazawa, K. Tamura, and E. Yoshida, " Supermode noise suppression in a harmonically modelocked fibre laser by selfphase modulation and spectral filtering," Electron. Lett., vol. 32, Feb., pp. 461-462, (1996).
-
[205] M. Nakazawa," Telecommunications-Rides a New Wave," Photonics Spectra, Feb., pp. 97-104, (1996).
-
[204] K. Tamura and M. Nakazawa, "Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium - doped fiber amplifiers", Opt. Lett., vol. 21, No. 1, pp. 68-70, Jan., (1996).
-
[203] T. Komukai and M. Nakazawa, "Efficient fiber gratings formed on high NA dispersion-shifted fiber and dispersion-flattened fiber", Jpn. J. Appl. Phys., vol. 34, Part 2, No. 10A, L1286-L1287, October, (1995)
-
[202] T. Komukai and M. Nakazawa, "Tunable single frequency erbium doped fiber ring lasers using fiber grating etalons", Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6A, L679-L680, June, (1995)
-
[201] K. Tamura, T. Komukai, T. Yamamoto, T. Imai, E. Yoshida and M. Nakazawa, "High energy, sub - picosecond pulse compression at 10GHz using a fiber / fiber - grating pulse compressor", Electron. Lett., Vol. 31, No. 25, pp. 2194 - 2195, Dec., (1995).
-
[200] K. Tamura and M. Nakazawa, "Optimizing power extraction in stretched - pulse fiber ring lasers", Appl. Phys. Lett., Vol. 67, No. 25, pp.3691 - 3693, Dec., (1995).
-
[199] E. Yoshida, Y. Kimura and M. Nakazawa, "Ultrahigh Speed Picosecond - Femtosecond Fiber Lasers", Optoelectronics Devices and Technologies, vol. 10, No. 4, pp. 531 - 542, Sep., (1995).
-
[198] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa, "High speed optical path routing by using four - wave mixing and a wavelength router with fiber gratings and optical circulators", Optics Communications, 120 , pp.245 - 248, Nov., (1995).
-
[197] M. Nakazawa, A. Sahara, T. Imai, T. Yamamoto, E. Yamada and Y. Kimura, "A Novel Technique for Measuring Group Velocity Dispersion of an Installed Ultralong Fiber by Using Erbium - Doped Fiber Amplifiers", Jpn. J. Appl. Phys., vol. 34, Part 2, No.9A, pp. L1167 - L1169, Sep., (1995).
-
[196] M. Nakazawa and Y. Kimura, "Optical cable amplifiers", Electron. Lett., vol. 31, No. 20, pp. 1744 - 1445, Sep., (1995).
-
[195] K. Suzuki and M. Nakazawa, "Recent Progress in Optical Soliton Communication", Optical Fiber Technology, 1, pp.289 - 308, Aug., (1995)
-
[194] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T.Imai, A. Sahara, O.Yamauchi and M. Umezawa, "Soliton transmission at 20 Gbit/s over 2000 km in Tokyo metropolitan optical network", Electron. Lett., vol. 31, No. 17, pp. 1478 - 1479, Aug., (1995).
-
[193] E. Yamada, E. Yoshida, T. Kitoh and M. Nakazawa, "Generation of terabit per second optical data pulse train", Electron. Lett., vol. 31, No. 16, pp. 1342 - 1343, Aug., (1995).
-
[192] K. Tamura, E. Yoshida, T. Sugawa and M. Nakazawa, "Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high - power erbium - doped fiber amplifier", Opt. Lett., vol. 20, No. 15, pp. 1631 - 1633, Aug., (1995).
-
[191] M. Nakazawa and H. Kubota, "Analyses of the Dispersion - Allocated Bright and Dark Solitons", Jpn. J. Appl. Phys., vol. 34, Part 2, No.7B, pp. L889 - L891, July., (1995).
-
[190] T. Sugawa, H. Kubota and M. Nakazawa, "Polarization dependence of femtosecond soliton - soliton interactions in dispersion -shifted fiber", Opt. Lett., Vol. 20, No. 13, pp. 1453 - 1455, July, (1995).
-
[189] M. Nakazawa and K. Suzuki, "Generation of a pseudorandom dark soliton data train and its coherent detection by one - bit - shifting with a Mach - Zehnder interferometer", Electron. Lett., Vol. 31, No. 13, pp. 1084 - 1085, June., (1995).
-
[188] M. Nakazawa and K. Sizuki, "10Gbit/s pseudorandom dark soliton data transmission over 1200 km", Electron. Lett.,vol. 31, No. 13, pp. 1076 - 1077, June., (1995).
-
[187] K. Tamura, Y. Kimura and M. Nakazawa, "Femtosecond pulse generation over 82 nm wavelength span from passively modelocked erbium - doped fiber laser", Electron. Lett., vol. 31, No. 13, pp. 1062 - 1063, June., (1995).
-
[186] M. Nakazawa and H. Kubota, "Construction of Dispersion - Allocated Soliton Transmission Line Using Conventional Dispersion - Shifted Nonsoliton Fibers", Jpn. J. Appl. Phys., vol. 34, Part 2, No.6A, pp. L681 - L683, June., (1995).
-
[185] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota, T. Komukai, E. Yamada, T. Sugawa, E. Yoshida, T. Yamamoto, T. Imai, A. Sahara, H.Nakazawa, O.Yamauchi and M. Umezawa, "Field demonstration of soliton transmission at 10 Gbit/s over 2000 km in Tokyo metropolitan optical loop network", Electron. Lett., vol. 31, No. 12, pp. 992 - 993, June., (1995).
-
[184] T. Yamamoto, T. Imai, T. Komukai, Y. Miyajima and M. Nakazawa, "Optical demultiplexing and routing of a TDM signal by using four - wave mixing and a novel wavelength router with optical circulators and fiber gratings", Electron. Lett., vol. 31, No. 9, pp. 744 - 745, Apr., (1995).
-
[183] M. Nakazawa, K. Suzuki, E. Yoshida, T. Kitoh and M. Kawachi, "160 Gbit/s soliton data transmission over 200km", Electron. Lett., Vol. 31, No. 7, pp. 565 - 566, April., (1995).
-
[182] E. Yoshida, Y. Kimura, and M. Nakazawa, "20 GHz, 1.8 ps Pulse Generation from a Regeneratively Mode-Locked Erbium-Doped Fibre Laser and its Femtosecond Pulse Compression", Electron. Lett., vol. 31, March, pp. 377-378, (1995).
-
[181] T. Komukai, Y. Miyajima, and M. Nakazawa, "In-line fiber grating-type optical bandpass filter tuned by applying lateral stress", Jpn. J. Appl. Phys., vol. 34, March, pp. L306-308, (1995).
-
[180] T. Komukai, Y. Miyajima, and M. Nakazawa, "An in-line optical band pass filter with fiber gratings and an optical circulator and its application to pulse compression", Jpn. J. Appl. Phys.,vol. 34, Feb., pp. L230-L232, (1995).
-
[179] M. Nakazawa and H. Kubota, "Optical soliton communication in a positively and negatively dispersion-allocated optical fibre transmission line", Electron. Lett., vol. 31, No. 3, pp. 216-217, Feb., (1995).
-
[178] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Polarization Dependence of Soliton Interactions in Femtosecond Soliton Transmission", IEICE Trans. Electron., vol. E78-C, No. 1, pp. 28-37, Jan., (1995).
-
[177] H. Kubota and M. Nakazawa, "Soliton Transmission Control for Ultra High Speed System", IEICE Trans. Electron., vol. E78-C, No. 1, pp. 5-11, Jan., (1995).
-
[176] M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion-decreasing, erbium-doped active soliton compressor", Electron. Lett., vol. 30, No. 24, pp. 2038-2040, Nov., (1994).
-
[175] T. Sugawa, K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton self-frequency shift in orthogonally polarised femtosecond solitons", Electron. Lett., vol. 30, No. 23, pp. 1963-1964, Nov., (1994).
-
[174] E. Yamada, K. Suzuki, and M. Nakazawa, "Subpicosecond optical demultiplexing at 10 GHz with zero-dispersion, dispersion-flattened, nonlinear fibre loop mirror controlled by 500 fs gain-switched laser diode", Electron. Lett., vol. 30, No. 23, pp. 1966-1967, Nov., (1994).
-
[173] M. Nakazawa, E. Yoshida, E. Yamada, K. Suzuki, T. Kitoh, and M. Kawachi, "80 Gbit/s soliton data transmission over 500 km with unequal amplitude solitons for timing clock extraction", Electron. Lett., vol. 30, No. 21, pp. 1777-1778, Oct., (1994).
-
[172] E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, and M. Nakazawa, "Generation of 1.2 ps, 10 GHz pulse train from all-optically modelocked, erbium fibre ring laser with active nonlinear polarization rotation", Electron. Lett., vol. 30, No. 21, pp. 1764-1765, Oct., (1994).
-
[171] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond Erbium-Doped Fiber Laser with Nonlinear Poarization Rotation and Its Soliton Compression", Jpn. J. Appl. Phys., vol. 33, No. 10, Part 1, pp. 5779-5783, Oct., (1994).
-
[170] M. Nakazawa, E. Yoshida, and Y. Kimura, "Ultrastable harmonically and regeneratively modelocked polarisation-maintaining erbium fibre ring laser", Electron. Lett., vol. 30, No. 19, pp. 1603-1604, Sep., (1994).
-
[169] K. Kurokawa, H. Kubota, and M. Nakazawa, "Femtosecond Soliton Interactions in a Distributed Erbium-Doped Fiber Amplifier", IEEE, J. Quantum Electron., vol. 30, pp. 2220-2226, Sep., (1994).
-
[168] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and, Y. Kimura, "Straight-line soliton data transmission at 20 Gbit/s beyond Gordon-Haus limit", Electron. Lett., vol. 30, No. 16, pp. 1331-1332, Aug., (1994).
-
[167] M. Nakazawa," Ultrahigh speed optical soliton communication," O plus E (in Japanese), Invited paper, No. 177, pp. 53-64, Aug., (1994).
-
[166] E. Yamada and M. Nakazawa, "Reduction of Amplified Spontaneous Emission from a Transmitted Soliton Signal Using a Nonlinear Amplifying Loop Mirror and a Nonlinear Optical Loop Mirror", IEEE J. Quantum Electron., vol. 30, No. 8, pp. 1842-1850, Aug., (1994).
-
[165] M. Nakazawa, "Soliton Transmission in Telecommunication Networks," IEEE Communications Magazine, vol. 32, No. 3, pp. 34-41, March (1994).
-
[164] K. Suzuki, E. Yamada, H. Kubota, and M. Nakazawa, "Optical soliton communication system using erbium-doped fiber amplifiers", Fiber Integ. Opt., vol. 13, No. 1, p. 45-64, Jan., (1994).
-
[163] M. Nakazawa and H. Kubota, "Physical interpretation of reduction of soliton interaction forces by bandwidth limited amplification", Electron. Lett., vol. 29, No. 2, pp. 226-227, Jan., (1993)
-
[162] H. Kubota and M. Nakazawa, "Soliton transmission with long amplifier spacing under soliton control", Electron. Lett., vol. 29, No. 20, pp. 1780-1781, Sep., (1993).
-
[161] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Active Q switching and mode locking in a 1.53-μm fiber ring laser with saturable absorption in erbium-doped fiber at 4.2 K", Opt. Lett., vol. 18, No. 18, pp. 1526-1528, Sep., (1993).
-
[160] E. Yoshida, Y. Kimura, and M. Nakazawa, "Femtosecond erbium-doped fiber lasers and a soliton compression technique", Jpn. J. Appl. Phys., vol. 32, pp. 3461-3466, Aug., (1993).
-
[159] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura, "Straight-line soliton data transmission over 2000 km at 20 Gbit/s and 1000 km at 40 Gbit/s using erbium-doped fiber amplifiers", Electron. Lett., vol. 29, No. 16, pp. 1474-1475, Aug., (1993).
-
[158] H. Kubota and M. Nakazawa, "Soliton transmission control in time and frequency domains", IEEE J. Quantum Electron., vol. 29, No. 7, pp. 2189-2197, July (1993).
-
[157] M. Nakazawa, E. Yoshida, T. Sugawa and Y. Kimura, "Continuum suppressed, uniformly repetitive 136 fs pulse generation from an erbium-doped fiber laser with nonlinear polarisation rotation", Electron. Lett., vol. 29, No. 15, pp. 1327-1328, July (1993).
-
[156] T. Sugawa, Yoshida, Y. Miyajima and M. Nakazawa, "1.6 ps pulse generation from a 1.3 μm Pr3+-doped fluoride fibre laser", Electron. Lett., vol. 29, No. 10, pp. 902-903, May(1993).
-
[155] E. Yamada, K. Wakita and M. Nakazawa, "30 GHz pulse train generation from a multiquantum well electro-absorption intensity modulator", Electron. Lett., vol. 29, No. 10, pp. 845-846, May(1993).
-
[154] H. Kubota and M. Nakazawa," Soliton transmission control in time and frequency domains," IEICE Trans. Electron. (in Japanese),vol. J76-C-I, No. 5, pp. 147-157, May(1993).
-
[153] M. Nakazawa, K. Suzuki, H. Kubota and Y. Kimura, "Self-Q-switching and mode locking in a 1.53-μm fiber ring laser with saturable absorption in erbium-doped fiber at 4.2 K", Opt. Lett., vol. 18, No. 8, pp. 612-615, Apr., (1993).
-
[152] E. Yamada, K. Suzuki, H. Kubota, and M. Nakazawa, "Ultrahigh speed optical soliton communication using erbium-doped fiber amplifiers", IEICE Trasns. Commun. vol. E76-B, pp. 410-419, Apr., (1993).
-
[151] E. Yamada, K. Suzuki, and M. Nakazawa," Reduction of ASE noise from transmitted soliton signals with a nonlinear amplifying optical loop mirror," IEICE Trans. Electron. (in Japanese), vol. J76-C-I, No. 4, pp. 81-88, Apr., (1993).
-
[150] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura and M. Takaya, "Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains", Electron. Lett., vol. 29, No. 9, pp. 729-730, Apr., (1993).
-
[149] Y. Kimura, and M. Nakazawa, "Gain characteristics of erbium-doped fiber amplifiers with high erbium concentration", Jpn. J. Appl. Phys., vol. 32, pp. 1120-1125, Mar, (1993).
-
[148] M. Nakazawa, E. Yoshida, and Y. Kimura, "Generation of 98 fs optical pulses directly from an erbium-doped fiber ring laser at 1.57 μm", Electron. Lett., vol. 29, No. 1, pp. 63-64, Jan, (1993).
-
[147] K. Kurokawa, H. Kubota and M. Nakazawa, "Significant modification of femtosecond soliton interaction in gain medium by small subpulses", Electron. Lett., vol. 28, No. 25, pp. 2334-2335, Dec., (1992)
-
[146] M. Nakazawa and Y. Kimura, "Electron-beam vapour-deposited erbium-doped glass waveguide laser at 1.53 μm", Electron. Lett., vol. 28, No. 22, pp. 2054-2055, Oct., (1992)
-
[145] K. Kurokawa, H. Kubota, and M. Nakazawa, "Soliton self-frequency shift accelerated by femtosecond soliton interaction", Electron Lett., vol. 28, No. 22, pp. 2052-2053 (1992).
-
[144] E. Yoshida, Y. Kimura, and M. Nakazawa," Femtosecond erbium fiber laser with a nonlinear amplifying loop mirror pumped by laser diodes and the repetition rate control of output pulses," IECE of Japan (in Japanese),vol. J75-C-I, No.10, pp. 613-621 (1992).
-
[143] K. Suzuki, H. Kubota, and M. Nakazawa, "Soliton communication using erbium-doped fiber amplifiers," Review of Laser Eng. (in Japanese), Vol. 20, No. 8, pp. 662-672 (1992).
-
[142] M. Nakazawa, Y. Kimura, and K. Suzuki," Self induced transparency soliton and coherent π pulse propagation in erbium-doped fibers and amplifiers," Review of Laser Eng. (in Japanese), vol. 20, No. 8, pp. 638-652 (1992).
-
[141] Y. Kimura and M. Nakazawa," Gain characteristics of erbium-doped fibre amplifiers with high erbium concentration," Electron. Lett., vol. 28, pp. 1420-1421 (1992).
-
[140] K. Kurokawa and M. Nakazawa," Femtosecond soliton transmission characteristics in an ultralong erbium-doped fiber amplifier with different pumping configuration," IEEE, J. Quantum Electron. vol. QE-28, pp. 1922-1929 (1992).
-
[139] M. Nakazawa, H. Kubota, E. Yamada, and K. Suzuki," Infinite-distance soliton transmission with soliton controls in time and frequency domains," Electron. Lett., vol. 28, pp. 1099-1100 (1992).
-
[138] M. Nakazawa, K. Suzuki, and E. Yamada," 20 Gbit/s, 1020 km penalty-free soliton data transmission using erbium-doped fibre amplifiers," Electron. Lett., vol. 28, pp. 1046-1047 (1992).
-
[137] M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota and Y. Kimura," 10 Gbit/s, 1200 km error-free soliton data transmission using erbium-doped fibre amplifiers," Electron. Lett., vol. 28, pp. 817-818 (1992).
-
[136] M. Nakazawa and H. Kubota," Physical interpretation of reduction of soliton interaction forces by bandwidth limited amplification," Electron. Lett., vol. 28, pp. 958-960 (1992).
-
[135] M. Nakazawa, K. Suzuki, Y. Kimura, and H. Kubota, "Coherent p-pulse propagation with pulse breakup in an erbium-doped fiber waveguide amplifier," Phys. Rev., vol. 45, pp. 2682-2685 (1992).
-
[134] E. Yoshida, Y. Kimura, and M. Nakazawa," Laser diode-pumped femtosecond erbium-doped fiber laser with a sub-ring cavity for repetition rate control," Appl. Phys. Lett., vol. 60, pp. 932-934 (1992).
-
[133] H. Kubota and M. Nakazawa,"Partial soliton communication system," Opt. Commun., vol. 87, pp. 15-18 (1992).
-
[132] M. Nakazawa, Y. Kimura, K. Kurokawa, and K. Suzuki, "Self-induced-transparency solitons in an erbium-doped fiber waveguide," Phys. Rev. A, vol. 45, pp. 23-26 (1992).
-
[131] Y. Kimura, K.Suzuki, and M. Nakazawa," Noise figure characteristics of Er3+-doped fiber amplifier pumped in 0.8 μm band," Electron. Lett., vol. 27, No. 2, pp. 146-147, Jan., (1991)
-
[130] Y. Kimura, E. Yoshida, and M. Nakazawa,"High gain characteristics of an erbium-doped fiber amplifier pumped in the 800 nm band," Jpn. J. Appl. Phys., vol. 30, pp. 1995-2001 (1991).
-
[129] K. Kurokawa and M. Nakazawa, "Femtosecond soliton transmission in 18 km erbium-doped fibre amplifier with different pumping configurations," Electron. Lett., vol. 27, pp. 1765-1766 (1991).
-
[128] M. Nakazawa, E. Yamada, H. Kubota, "Coexistence of a self-induced-transparency soliton and a nonlinear Schr單inger soliton in an erbium-doped fiber," Phys. Rev. A, vol. 44, pp. 5973-5987 (1991).
-
[127] M. Nakazawa," Optical soliton transmission," Trans. IECE (in Japanese) , Invited paper, vol. J74-C-I, pp. 429-439 (1991).
-
[126] M. Nakazawa, E. Yoshida, and Y. Kimura,"Low threshold, 290 fs erbium-doped fiber laser with a nonlinear amplifying loop mirror pumped by InGaAsP laser diodes," Appl. Phys. Lett., vol. 59, pp. 2073-2075 (1991).
-
[125] M. Nakazawa, K. Suzuki, E. Yamada, and H. Kubota, "Observation of nonlinear interactions in 20 Gbit/s soliton transmission over 500 km using erbium-doped fibre amplifiers," Electron. Lett., vol. 27, pp. 1662-1663 (1991).
-
[124] M. Nakazawa and K. Kurokawa," Femtosecond soliton transmission in 18 km-long dispersion-shifted distributed erbium-doped fibre amplifier," Electron. Lett., vol. 27, pp. 1369-1370 (1991).
-
[123] E. Yamada, K. Suzuki, and M. Nakazawa," 10 Gbit/s single-pass soliton transmission over 1000 km," Electron. Lett., vol. 27, 1289-1290 (1991).
-
[122] M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki,"10 Gbit/s soliton data transmission over one million kilometres," Electron. Lett., vol. 27, pp. 1270-1272 (1991).
-
[121] M. Nakazawa and Y. Kimura," Lanthanum codoped erbium fibre amplifier," Electron. Lett., vol. 27, pp. 1065-1067 (1991).
-
[120] M. Nakazawa, E. Yamada, and H. Kubota,"Coexistence of self-induced transparency soliton and nonlinear Schr單inger soliton," Phys. Rev. Lett., vol. 66, pp. 2625-2628 (1991).
-
[119] E. Yamada, K. Suzuki, and M. Nakazawa, "Stabilization of optical output power using gain saturation of EDFA and its application to soliton communication," Trans. IECE (in Japanese), vol. J74-C-I, pp. 167-175 (1991).
-
[118] K. Kurokawa and M. Nakazawa, "Wavelength-dependent amplification characteristics of femtosecond erbium-doped fiber amplifiers," Appl. Phys. Lett., vol. 58, pp. 2871-2873 (1991).
-
[117] H. Kubota and M. Nakazawa,"Recent progress on optical soliton communication," IEICE Transactions, Invited Paper, vol. E-74, pp. 1373-1378 (1991).
-
[116] M. Nakazawa, H. Kubota, K. Kurokawa, and E. Yamada," Femtosecond optical soliton transmission over long distances using adiabatic trapping and soliton standardization," J. Opt. Soc. Amer., B, vol. 8, pp. 1811-1817 (1991).
-
[115] E. Yamada and M. Nakazawa, "Automatic intensity control of an optical transmission line using enhanced gain saturation in cascaded optical amplifiers," IEEE, J. Quantum Electron., vol. QE-27, pp. 146-151 (1991).
-
[114] Y. Kimura, K. Suzuki, and M. Nakazawa," Noise figure characteristics of Er3+-doped fibre amplifier pumped in 0.8 μm band," Electron. Lett., vol. 27, pp. 146-147(1991).
-
[113] M. Nakazawa, Y. Kimura, and K. Suzuki, " High gain erbium fiber amplifier pumped by 800nm band," Electron. Lett., vol. 26, No. 8, pp. 548-549, Apr., (1990)
-
[112] M. Nakazawa, Y. Kimura, and K. Suzuki," Ultralong Dispersion-shifted Erbium-Doped Fiber Amplifier and Its Application to soliton transmission," IEEE, J. Quantum Electron., vol. QE-26, pp. 2103-2108 (1990).
-
[111] M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, and Y. Kimura, "Dynamic Optical Soliton Communication," IEEE, J. Quantum Electron., vol. QE-26, pp. 2095-2102 (1990).
-
[110] M. Nakazawa, K. Suzuki, E. Yamada," Femtosecond optical pulse generation using a distributed-feedback laser diode," Electron. Lett., vol. 26, pp. 2038-2040 (1990).
-
[109] M. Nakazawa," Propagation and amplification of ultrashort optical soliton pulses in erbium-doped fibers for very high speed communication," Springer Series in Chemical Physics, vol. 53, Ultrafast Phenomena VII, pp. 179-183 (1990).
-
[108] M. Nakazawa, Y. Kimura, E. Yoshida, and K. Suzuki," Efficient erbium-doped fibre amplifier pumped at 820 nm," Electron. Lett., vol. 26, pp. 1936-1937 (1990).
-
[107] Y. Kimura, M. Nakazawa, and K. Suzuki," Ultra-efficient erbium-doped fiber amplifier," Appl. Phys. Lett., vol. 57, pp. 2635-2637 (1990).
-
[106] K. Suzuki, Y. Kimura, and M. Nakazawa,"High power Er3+-doped fiber amplifier pumped by 1.48 μm laser diodes," Jpn. J. Appl. Phys., vol. 29, pp. L2067-L2069 (1990).
-
[105] M. Nakazawa, K. Kurokawa, H. Kubota, and E. Yamada," Observation of the trapping of an optical soliton by adiabatic gain narrowing and its escape," Phys. Rev. Lett., vol. 65, pp. 1881-1884 (1990).
-
[104] M. Nakazawa, K. Suzuki, E. Yamada, and Y. Kimura," 20 Gbit/s soliton transmission over 200 km using erbium-doped fibre repeaters," Electron. Lett., vol. 26, pp. 1592-1593 (1990).
-
[103] M. Nakazawa" Erbium-doped optical fiber amplifiers and thier applications," Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vol. 59, no.9, pp. 1175-1192 (1990).
-
[102] H. Kubota and M. Nakazawa," Maximum transmission capacity of a soliton communication system with lumped amplifiers," Electron. Lett., vol. 26, pp. 1454-1455 (1990).
-
[101] M. Nakazawa, Y. Kimura, and K. Suzuki," Gain-distribution measurements along an ultralong erbium-doped fiber amplifier using optical-time-domain reflectometry," Opt. Lett., vol. 15, pp. 1200-1202 (1990).
-
[100] K. Suzuki, and M. Nakazawa," Automatic optical soliton control using cascaded Er3+-doped fibre amplifiers," Electron. Lett., vol. 26, pp. 1032-1033 (1990).
-
[99] M. Nakazawa, K. Kurokawa, H. Kubota, K. Suzuki, and Y. Kimura," Femtosecond erbium-doped optical fiber amplifier," Appl. Phys. Lett., vol. 57, pp. 653-655 (1990).
-
[98] K. Suzuki, Y. Kimura, and M. Nakazawa," High gain Er3+-doped fibre amplifier pumped by 820 nm GaAlAs laser diodes," Electron. Lett., vol. 26, pp. 948-949 (1990).
-
[97] M. Nakazawa, Y. Kimura, and K. Suzuki," High gain erbium fibre amplifier pumped by 800 nm band," Electron. Lett., vol. 26, pp. 548-549 (1990).
-
[96] K. Suzuki, M. Nakazawa, E. Yamada, and Y. Kimura," 5 Gbit/s, 250 km error-free soliton transmission with Er3+-doped fiber amplifiers and repeaters," Electron. Lett., vol. 26, pp. 551-553 (1990).
-
[95] M. Nakazawa, K. Suzuki, and Y. Kimura," Transform-limited pulse generation in the GHz region from a gain-switched distributed-feedback laser diode using spectral windowing," Opt. Lett. vol. 15, pp. 715-717 (1990).
-
[94] M. Nakazawa, K. Suzuki, and Y. Kimura," Generation and transmission of optical solitons in the GHz region using a directly modulated distributed-feedback laser diode," Opt. Lett., vol. 15, pp. 588-590 (1990).
-
[93] K. Kurokawa, M. Nakazawa, and T. A. Caughey," Near Infrared ultrashort pulse generation with LiNbO3 by difference frequency generation," Opt. Commun. , vol. 75, pp. 413-418 (1990).
-
[92] Y. Kimura, K. Suzuki, and M. Nakazawa," Pump wavelength dependence of the gain factor in 1.48 μm-pumped Er3+-doped fiber amplifiers," Appl. Phys. Lett., vol. 56, pp. 1611-1613 (1990).
-
[91] H. Kubota and M. Nakazawa," Long distance optical soliton transmission with lumped amplifiers," IEEE, J. Quantum Electron., vol. QE-26, pp. 692-700 (1990).
-
[90] M. Nakazawa, K. Suzuki, and Y. Kimura," 3.2-5 Gb/s, 100 km error-free soliton transmission with erbium amplifiers and repeaters," IEEE, Photon. Tech. Lett., vol. 2, pp. 216-219 (1990).
-
[89] Y. Kimura, K. Suzuki, and M. Nakazawa," Laser-diode-pumped mirror-free Er3+-doped fiber laser," Opt. Lett., Vol. 14, No. 18, pp. 999-1001, Sep., (1989)
-
[88] Y. Kimura, K. Suzuki, and M. Nakazawa," 46.5 dB gain in Er3+-doped fibre amplifier pumped by 1.48 μm GaInAsP laser diodes," Electron. Lett., vol. 25, pp. 1656-1657 (1989).
-
[87] K. Suzuki, Y. Kimura, and M. Nakazawa," Pumping wavelength dependence on gain factor of a 0.98 μm pumped Er3+ fiber amplifier," Appl. Phys. Lett., vol. 55, pp. 2573-2575 (1989).
-
[86] K. Kurokawa, H. Kubota, and M. Nakazawa," Generation of 72-fs pulse from a cavity dumped, synchronously pumped dye laser with a single jet," Opt. Commun., vol. 73, pp. 319-321 (1989).
-
[85] M. Nakazawa, Y. Kimura, K. Suzuki, H. Kubota," Erbium-doped fiber amplifier and its application to nonlinear optics," Proceedings of SPIE-The International Society for Optical Engineering, vol. 1171, pp. 328-345 (1989).
-
[84] M. Nakazawa, K. Suzuki, and Y. Kimura,"20-GHz soliton amplification and transmission with an Er3+-doped fiber," Opt. Lett., vol. 14, pp. 1065-1067 (1989).
-
[83] M. Nakazawa, Y. Kimura, K. Suzuki, and H. Kubota," Wavelength multiple soliton amplification and transmission with an Er3+-doped optical fiber," J. Appl. Phys. vol. 66, pp. 2803-2812 (1989).
-
[82] K. Suzuki, Y. Kimura and M. Nakazawa," Subpicosecond soliton amplification and transmission using Er3+-doped fibers pumped by InGaAsP laser diodes," Opt. Lett., vol. 14, 865-867 (1989).
-
[81] K. Hagimoto, K. Iwatsuki, A. Takada, M. Nakazawa, et. al.M. Saruwatari, K. Aida, and K. Nakagawa, " 250 km nonrepeated transmission experiment at 1.8 Gb/s using LD pumped Er3+-doped fibre amplifiers in IM/DD system," Electron. Lett., vol. 25, pp. 662-664 (1989).
-
[80] M. Nakazawa, K. Suzuki, and H. Kubota, and H. A. Haus," The modulational instability laser-Part II: Theory," IEEE, J. Quantum Electron., vol. QE-25, pp. 2045-2052 (1989).
-
[79] M. Nakazawa, K. Suzuki, and H. A. Haus," The modulational instability laser-Part I:Experiment," IEEE ,J. Quantum Electron., vol. QE-25, pp. 2036-2044 (1989).
-
[78] K. Suzuki, Y. Kimura and M. Nakazawa," An 8 mW cw Er3+-doped fiber laser pumped by 1.46 μm InGaAsP laser diodes," Jpn. J. Appl. Phys., vol. 28, pp. L1000-1002 (1989).
-
[77] K. Kurokawa and M. Nakazawa," Femtosecond 1.4-1.6 μm infrared pulse generation at a high repetition rate by difference frequency generation," Appl. Phys. Lett., vol. 55, pp. 7-9 (1989).
-
[76] H. Kubota and M. Nakazawa," Study of optical pulse compression with higher-order nonlinearity and dispersion," Jpn. J. Appl. Phys., vol. 28, pp. 609-614 (1989).
-
[75] M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus," High-order solitons and the modulational instability," Phys. Rev. A, vol. 39, pp. 5768-5776 (1989).
-
[74] K. Suzuki, M. Nakazawa, and H. A. Haus," The parametric soliton laser with low pedestal," Jpn. J. Appl. Phys. vol. 28, pp. L256-258 (1989).
-
[73] M. Nakazawa, Y. Kimura, and K. Suzuki, " Soliton amplification and transmission with Er3+-doped fibre repeater pumped by GaInAsP laser diode," Electron. Lett., vol.25, pp. 199-200 (1989).
-
[72] K. Suzuki, M. Nakazawa, and H. A. Haus," Parametric soliton laser," Opt. Lett., vol. 14, pp. 320-322 (1989).
-
[71] M. Nakazawa, Y. Kimura, and K. Suzuki,"Efficient Er3+-doped optical fiber amplifier pumped by a 1.48 μm InGaAsP laser diode," Appl. Phys. Lett., vol. 54, pp. 295-297 (1989).
-
[70] Y. Kimura and M. Nakazawa," Multiwavelength cw laser oscillation in a Nd3+ and Er3+ doubly doped fiber laser," Appl. Phys. Lett., vol. 53, pp. 1251-1253 (1988).
-
[69] K. Kurokawa, H. Kubota, and M. Nakazawa,"48 fs, 190 kW pulse generation from a cavity dumped, synchronously pumped dye laser," Opt. Commun., vol. 68, pp. 287-290 (1988).
-
[68] M. Nakazawa, K. Suzuki, and H. A. Haus," Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A, vol. 38, pp. 5193-5196 (1988).
-
[67] H. Kubota, K. Kurokawa, and M. Nakazawa," 29-fsec pulse generation from a linear-cavity synchronously pumped dye laser," Opt. Lett., vol. 13, pp. 749-751 (1988).
-
[66] K. Suzuki and M. Nakazawa," Raman amplification in a P2O5-doped optical fiber," Opt. Lett., vol. 13, pp. 666-668 (1988).
-
[65] T. Horiguchi M. Nakazawa, and M. Tokuda," Multimode-fiber-type optical directional coupler for OTDR by using acoustooptical deflector," Trans. IECE (in Japanese), vol. J7l-B, pp. 547-554 (1988).
-
[64] Y. Kimura and M. Nakazawa," Lasing characteristics of Er3+-doped silica fibers from 1553 up to 1603 nm," J. Appl. Phys., vol. 64, pp. 516-520 (1988).
-
[63] H. Kubota and M. Nakazawa," Compensation of nonlinear chirp generated by self-steepening using third order dispersion of a grating pair," Opt. Commun., vol. 66, pp. 79-82 (1988).
-
[62] M. Nakazawa, T. Nakashima, and H. Kubota," Optical pulse compression using a TeO22 acousto-optical light deflector," Opt. Lett., vol. 13, pp. 120-122 (1988).
-
[61] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai," Efficient optical pulse compression using a pair of Brewster-angled TeO2 crystal prisms," J. Opt. Soc. Amer., vol. B-5, pp. 215-221 (1988).
-
[60] Y. Kimura and M. Nakazawa," Nonlinear polarization changes in a birefringent fiber," Jpn. J. Appl. Phys., vol. 26, pp. 1503-1508 (1987).
-
[59] M. Nakazawa and Y. Kimura," Simultaneous oscillation at 0.91, 1.08, 1.53 μm in a fusion-spliced fiber laser," Appl. Phys. Lett., vol. 51, pp. 1768-1770 (1987).
-
[58] M. Nakazawa," Nonlinear optics in optical fibers," Journal of Applied Physics (In Japanese, Ouyou-Butsuri), vol. 56, no. 10, pp. 1265-1288 (1987).
-
[57] Y. Kimura, M. Nakazawa, and S. Seikai, " Fiber-optic nonlinear coherent coupler," IEEE, J. Quantum Electron., vol. QE-23, pp. 1261-1267 (1987).
-
[56] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai," 55 kW, 240 fs pulse generation from a cavity dumped, synchronously pumped dye laser and its application to pulse compression," Appl. Phys. Lett., vol. 51, pp. 728-730 (1987).
-
[55] M. Nakazawa, M. S. Stix, E. P. Ippen, and H. A. Haus," Theory of the synchronously pumped fiber Raman laser with self-phase modulation," J. Opt. Soc. Amer., vol. B-4, pp. 1412-1421 (1987).
-
[54] M. Nakazawa, T. Nakashima, H. Kubota, and S. Seikai, " 65-femtosecond pulse generation from a synchronously pumped dye laser without a colliding-pulse mode-locking technique," Opt. Lett., vol. 12, pp. 68l-683 (1987).
-
[53] Y. Kimura and M. Nakazawa," Lasing spectrum of P co-doped Nd3+ silica fibers," Jpn. J. Appl. Phys., vol. 26, pp. L1253-1254 (1987).
-
[52] T. Nakashima, M. Nakazawa, K. Nishi, and H. Kubota," Effect of stimulated Raman scattering on pulse-compression characteristics," Opt. Lett., vol. 12, pp. 404-406 (1987).
-
[51] H. A. Haus and M. Nakazawa," Theory of the fiber Raman soliton laser," J. Opt. Soc. Amer., vol. B-4, pp. 652-660 (1987).
-
[50] M. Nakazawa, M. Kuznetsov, and E. P. Ippen, "Theory of the synchronously pumped fiber Raman laser," IEEE, J. Quantum Electron., vol. QE-22, pp. 1953-1966 (1986).
-
[49] T. Nakashima, S. Seikai, M. Nakazawa, and Y. Negishi," Theoretical limit of repeater spacing in an optical transmission line utilizing Raman amplification," IEEE, J. Lightwave Tech., vol. LT-4, pp. 1267-1272 (1986).
-
[48] N. Uesugi, T. Horiguchi, M. Nakazawa, and Y. Murakami," Optical fiber cable measurements in the field," IEEE, J. Selected Areas in Communications, vol. SAC-4, pp.732-736 (1986).
-
[47] T. Nakashima, S. Seikai, and M. Nakazawa," Configuration of the optical transmission line using stimulated Raman scattering for signal light amplification," J. Lightwave Tech., vol. LT-4, pp.569-573 (1986).
-
[46] M. Nakazawa," Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers," J. Appl. Phys., vol. 59, pp. 2297-2305 (1986).
-
[45] M. Nakazawa," Measurement of polarization mode-coupling along a polarization-preserving optical fiber using a backscattering technique,"Jpn Soc. of Opt. (in Japanese), vol. 14, pp. 350-358 (1985).
-
[44] T. Nakashima, S. Seikai, and M. Nakazawa," Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers," Opt. Lett., vol. 10, pp. 420-422 (1985).
-
[43] T. Horiguchi, K. Suzuki, N. Shibata, M. Nakazawa, and S. Seikai," A novel technique for reducing polarization noise in optical-time-domain reflectometers for single-mode fibers," J. Lightwave Tech., vol. LT-3, pp. 901-908 (1985).
-
[42] M. Nakazawa, N. Shibata, T. Horiguchi, and S. Seikai, "Polarization-mode-coupling measurements along a spliced polarization- preserving fiber using a backscattering technique," J. Opt. Soc. Amer., vol. A-2, pp. 1066-1076 (1985).
-
[41] N. Shibata, K. Okamoto, M. Nakazawa, S. Seikai, and M. Tokuda, "Polarization mode properties of an elliptical stress-cladding fiber," Trans. IECE of Japan, vol. E-68, pp. 277-283 (1985).
-
[40] T. Nakashima, M. Nakazawa, and Y. Negishi," Sum-frequency generation in a polarization-preserving optical fiber," Jpn. J. Appl. Phys., vol. 24, pp. L308-310 (1985).
-
[39] M. Nakazawa, T. Nakashima, and S. Seikai, " Raman amplification in 1.4-1.5 μm spectral region in polarization-preserving optical fibers," J. Opt. Soc. Amer., vol. B-2, pp. 515-521 (1985).
-
[38] M. Nakazawa," Highly efficient Raman amplification in a polarization-preserving optical fiber," Appl. Phys. Lett., vol. 46, pp. 628-630 (1985).
-
[37] M. Nakazawa," Synchronously pumped fiber Raman gyroscope," Opt. Lett., vol. 10, pp. 193-195 (1985).
-
[36] T. Nakashima, M. Nakazawa, and S. Seikai,"Optical time domain reflectometer with a laser diode operating as light emitter/photodetector," Jpn. J. Appl. Phys., vol. 24, pp. L135-L136 (1985).
-
[35] M. Nakazawa, T. Nakashima, S. Seikai, and M. Ikeda," Self-detecting optical-time-domain reflectometer for single-mode fibers," Opt. Lett., vol. 10, pp. 157-159 (1985).
-
[34] M. Nakazawa, T. Nakashima, and S. Seikai, " Efficient multiple visible light generation in a polarization-preserving optical fiber pumped by a 1.064 μm YAG laser," Appl. Phys. Lett., vol. 45, pp. 823-825 (1984).
-
[33] M. Nakazawa, T. Nakashima, and M. Tokuda," An optoelectronic self-oscillatory circuit with an optical fiber delayed feedback and its injection locking technique," J. Lightwave Tech., vol. LT-2, pp. 719-730 (1984).
-
[32] M. Nakazawa, M. Tokuda, K. Washio, and Y. Asahara," 130-km long fault location for single-mode optical fiber using 1.55 μm Q-switched Er3+:glass laser," Opt. Lett., vol.9, pp. 312-314 (1984).
-
[31] Y. Morishige, S. Kishida, K. Washio, H. Toratani, and M. Nakazawa," Output-stabilized high-repetition-rate 1.545-μm Q-switched Er:glass laser," Opt. Lett., vol. 9. pp. 147-149 (1984).
-
[30] M. Nakazawa, M. Tokuda, Y. Morishige, and H. Toratani," 1.55 μm OTDR for single-mode optical fibre longer than 110 km," Electron. Lett., vol. 20, pp. 323-325 (1984).
-
[29] T. Horiguchi, M. Nakazawa, M. Tokuda, and N. Uchida," An acoustooptical directional coupler for an optical time domain reflectometer," J. Lightwave Tech., vol. LT-2, pp. 108-115 (1984).
-
[28] M. Nakazawa, N. Shibata, M. Tokuda, and Y. Negishi," Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers," J. Opt. Soc. Amer., vol. A-l, pp. 285-292 (1984).
-
[27] M. Nakazawa, M. Tokuda, and N. Uchida," Continuous-wave Raman oscillation for a Nd3+:YAG intracavity fiber laser," J. Opt. Soc. Amer., vol. B-l, pp. 86-90 (1984).
-
[26] M. Nakazawa, M. Tokuda, Y. Negishi, and N. Uchida," Active transmission line: Light amplification by backward stimulated Raman scattering in polarization-maintaining optical fiber," J. Opt. Soc. Amer., vol. B-l, pp. 80-85 (1984).
-
[25] M. Nakazawa, M. Tokuda, and Y. Negishi," Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique," Opt. Lett., vol. 8, pp. 546-548 (1983).
-
[24] M. Nakazawa and M. Tokuda," Continuum spectrum generation in a multimode fiber using two pump beams at 1.3 μm wavelength region," Jpn. J. Appl. Phys., vol. 22, pp. L239-L241 (1983).
-
[23] M. Nakazawa," Rayleigh backscattering theory for single-mode optical fibers," J. Opt. Soc. Amer., vol. 73, pp. 1175-1180 (1983).
-
[22] M. Nakazawa and M. Tokuda,"Measurement of the fiber loss spectrum using fiber Raman optical time domain reflectometry," Appl. Opt. , vol. 22, pp. 1910-1914 (1983).
-
[21] M. Nakazawa, and K. Aoyama," Measurement technique for single-mode optical fiber," Rev. ECL., vol. 31, pp. 290-298 (1983).
-
[20] M. Nakazawa, M. Tokuda, and N. Uchida," Lasing characteristics of a Nd3+:YAG laser with a long optical-fiber resonator," J. Opt. Soc. Amer., vol. 73, pp. 838-842 (1983).
-
[19] M. Nakazawa," Theory of backward Rayleigh scattering in polarization-maintaining single-mode fibers and its application to polarization optical time domain reflectometry," IEEE, J. Quantum Electron., vol. QE-19, pp. 854-86l (1983).
-
[18] M. Nakazawa, M. Tokuda, and N. Uchida," Analyses of optical time-domain reflectometry for single-mode fibers and of polarization optical time-domain reflectometry for polarization-maintaining fibers," Opt. Lett., vol. 8, pp. 130-132 (1983).
-
[17] M. Nakazawa, M. Tokuda, and N. Uchida, "Continuous-wave laser oscillation with an ultralong optical-fiber resonator," J. Opt. Soc. Amer., vol. 72, pp. 1338-1344 (1982).
-
[16] M. Nakazawa," Frequency characteristics of self-sustained intensity oscillation of a laser diode using a delayed electrical feedback," IEEE, J. Quantum Electron., vol. QE-18, pp. 1050-1052, (1982).
-
[15]M. Nakazawa, M. Tokuda, and K. Washio, "Optical time domain reflectometry at a wavelength of 1.5 μm using stimulated Raman scattering in multimode, graded-index optical fiber," J. Appl. Phys., vol. 53, pp. 1391-1393 (1982).
-
[14] T. Musha, J. Kamimura, and M. Nakazawa," Optical phase fluctuation thermally induced in a single-mode optical fiber," Appl. Opt., vol. 21, pp. 694-698 (1982).
-
[13] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida," Measurement and analysis on polarization properties of backward Rayleigh scattering for single-mode optical fibers," IEEE J. Quantum Electron., vol. QE-17, pp. 2326-2334 (1981).
-
[12] M. Nakazawa, M. Tokuda, K. Washio, and Y. Morishige,"Marked extension of diagnosis length in optical time domain reflectometry using 1.32 μm YAG laser," Electron. Lett., vol. 17, pp. 783- 785 (1981).
-
[11] M. Nakazawa, J. Kamimura, and T. Musha,"Preliminary experiment for optical heterodyne communication with a single-mode optical fiber by using frequency -stabilized He-Ne lasers," Opt. Lett., vol. 6, pp. 508-510 (1981).
-
[10] M. Nakazawa, M. Tokuda, and N. Uchida,"Self-sustained intensity oscillation of a laser diode introduced by a delayed electrical feedback using an optical fiber and an electrical amplifier," Appl. Phys. Lett., vol. 39, pp. 379-381 (1981).
-
[9] M. Nakazawa, T. Horiguchi, M. Tokuda, and N. Uchida,"Polarization beat length measurement in a single-mode optical fibre by backward Rayleigh scattering," Electron. Lett., vol. 17, pp. 513-515 (1981).
-
[8] M. Nakazawa, T. Tanifuji, M. Tokuda, and N. Uchida," Photon probe fault locator for single-mode optical fiber using an acousto-optical light deflector," IEEE, J. Quantum Electron., vol. QE-17, pp. 1264-1269 (1981).
-
[7] M. Nakazawa, J. Nakamura, and T. Musha," FM eliminated CH4, locked frequency stabilization of 3.39 μm He-Ne laser in dual feedback control," IEEE, J. Quantum Electron., vol. QE-16, pp. 854-859 (1980).
-
[6] M. Nakazawa and T. Musha,"Stability of FM-eliminated 3.39 μm He-Ne/CH4 laser" Jpn. J. Appl. Phys., vol. 19, pp. L327-330, (1980).
-
[5] M. Nakazawa and T. Musha, "Stability measurement of the 0.633 μm line in a CH4-locked 3.39 μm He-Ne laser," Jpn. J. Appl. Phys. vol. 19, pp. L315-317 (1980).
-
[4] M. Nakazawa, J. Nakamura, and T. Musha,"Frequency stabilization of 0.633 μm line with the aid of 3.39-μm line locked to CH4," Appl. Phys. Lett., vol. 35, pp. 745-747 (1979).
-
[3] M. Nakazawa, T. Musha, and T. Tako, "Frequency-stabilized 3.39 μm He-Ne laser with no frequency modulation," J. Appl. Phys., vol. 50, pp. 2544-2547 (1979).
-
[2] M. Nakazawa, T. Tako, and T. Musha,"Observation of saturated absorption of the 3.39 μm line in an external CH44cell," Jpn. J. Appl. Phys., vol. 18, pp. 597-602 (1979).
-
[1] M. Nakazawa, T. Tako, and T. Musha,"Frequency stabilization of a 3.39 μm He-Ne laser with no frequency modulation," Trans. IECE (in Japanese), vol.J62-C, pp.9-16 (1979).